

В. И. Донин, М. Д. Яковин, Д. В. Яковин, Квант. электрон., 2016, том 46, номер 7, 601–605

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 84.237.82.221 5 сентября 2016 г., 06:55:54

НЕЛИНЕЙНО-ОПТИЧЕСКИЕ ЯВЛЕНИЯ

Параметрический генератор света среднего ИК, видимого и УФ диапазонов с синхронной накачкой излучением Nd: YAG-лазера с модуляцией добротности резонатора и синхронизацией мод

В.И.Донин, М.Д.Яковин, Д.В.Яковин

Представлены результаты исследования параметрической генерации от нелинейного кристалла PPLN с синхронной накачкой Nd: YAG-лазером с модуляцией добротности, синхронизацией мод и длительностью импульса излучения 45 пс. Интенсивность излучения накачки в нелинейном кристалле достигала ~10 ГВт/см². При частоте следования импульсов 1 кГц средняя выходная мощность на длине холостой волны (~3.6 мкм) составляла ~12 мВт, пиковая мощность ~25 кВт, эффективность преобразования по поглощенной мощности ~10%. Ширина линии излучения на длине сигнальной волны (~1.5 мкм) была равна 13 см⁻¹. Помимо сигнальной и холостой волн, в спектре выходного излучении наблюдались линии с длинами волн 822, 754, 624, 532, 463, 442, 392 и 355 нм. Перестраиваемое излучение с длинами волн волия излучение излучение и и происхождение.

Ключевые слова: параметрическая генерация, Nd:YAG-лазер, синхронная накачка, модуляция добротности, синхронизация мод.

1. Введение

Разработка новых методов получения параметрической генерации света в среднем ИК диапазоне до сих пор не теряет своей актуальности. Интерес к параметрическим генераторам света (ПГС) в среднем ИК диапазоне связан не только с их применением в различных практических областях (медицина, системы безопасности, зондирование атмосферы и т.д.), но и с поиском путей повышения чувствительности ранее разработанных методов лазерной спектроскопии поглощения (фотоакустическая спектроскопия, CRD-спектроскопия и т.д.). Особый интерес представляют работы по созданию мощных перестраиваемых ПГС с квазисинхронным типом фазового взаимодействия на нелинейных кристаллах ниобата лития с периодически ориентированной доменной структурой (PPLN), что обусловлено их большими нелинейными коэффициентами, эффективностью, сравнительно высокими порогами разрушения, доступностью и приемлемыми ценами. Например, в [1] при накачке кристалла PPLN излучением наносекундного Nd: YAG-лазера с модуляцией добротности были достигнуты средние выходные мощности 22.6 и 63 Вт на длинах волн 3.8 и 1.47 мкм соответственно. Средняя мощность накачки составляла 150 Вт, частота следования – 10 кГц, длительность импульса накачки – 120 нс. В [2] было получено параметрическое преобразование частоты в кристалле PPLN при накачке импульсами нано-, пико- и фемтосекундной длительности. Эффективность преобразования в пикосекундном ПГС составила 14% и 12% на длинах холостых волн 3.5 и 4.5 мкм соответственно.

В.И.Донин, М.Д.Яковин, Д.В.Яковин. Институт автоматики и электрометрии СО РАН, Россия, 630090 Новосибирск, просп. Акад. Коптюга, 1; e-mail: donin@iae.nsk.su, m.d.yakovin@mail.ru

Поступила в редакцию 27 ноября 2015 г., после доработки – 4 марта 2016 г.

В настоящей работе представлены результаты исследования параметрической генерации от нелинейного элемента с квазисинхронным типом взаимодействия при синхронной накачке импульсным излучением Nd:YAGлазера длительностью 45 пс. В качестве нелинейного элемента использовался допированный MgO (5 мол. %) кристалл PPLN (Z-срез) с размерами $5 \times 1 \times 20$ мм и двумя «дорожками», имеющими период регулярной доменной структуры 29.5 и 30 мкм. Применялась однорезонаторная схема ПГС, накачка осуществлялась излучением Nd:YAGлазера с модуляцией добротности и синхронизацией мод с использованием сферического зеркала и акустооптического модулятора (метод CЗАОМ [3]).

Особенностью лазера накачки (помимо достижении синхронизации мод и модуляции добротности с помощью модулятора бегущей волны) являлось еще и то, что при отстройке длины резонатора от длины $L_0 = c/(4f) \approx 1.5$ м (где c – скорость света, f – частота звуковой волны в модуляторе) с помощью перемещения выходного зеркала резонатора происходил распад некоторых пикосекундных импульсов на два и более (в зависимости от величины отстройки). Это связано с возбуждением нескольких конкурирующих поперечных мод, что приводило к немоноимпульсной генерации пикосекундных импульсов при синхронизации мод с временным расстоянием между импульсами ~100 пс [4].

2. Экспериментальная установка

На рис.1 представлена использовавшаяся в работе схема экспериментальной установки с однорезонаторным ПГС. Лазер накачки ЛН, выполненный по схеме [4], излучал на длине волны 1064.5 нм цуг импульсов с частотой следования 1 кГц, длительностью цуга ~100 нс и отдельного импульса в цуге 45 пс. Пиковая мощность составляла ~1 МВт. Мощность излучения накачки, падающего на кристалл PPLN, плавно регулировалась с помощью поляризационного аттенюатора А.

Рис.1. Экспериментальная установка:

ЛН – Nd: YAG-лазер накачки; СП – спектральный прибор; ИМО – измеритель мощности; А – поляризационный аттенюатор; Л1, Л2 – согласующие линзы; Л3 – фокусирующая линза; PPLN – нелинейный кристалл; 31, 32, 33 – зеркала резонатора ПГС; П1 – сапфировая пластинка; П2 – германиевая пластинка; Э – поглощающий экран.

Резонатор ПГС был образован зеркалами 31, 32 и 33. Зеркало 31 (Layertec, Германия) имело радиус кривизны 100 мм, коэффициент отражения в области 1.4-1.7 мкм $R_{1,4-1,7} = 99,5\%$ и пропускание на длине волны 1.06 мкм около 99%. Медное зеркало 32 имело радиус кривизны 125 мм и коэффициенты отражения $R_{1.0-1.7} = 90\%$, $R_{3.0-4.0}$ = 97%. Плоское выходное зеркало 33 на подложке из ZnSe (Layertec) ($R_{1.2-1.7} = 99.5\%$) имело высокое пропускание на 1.06 мкм (78%) и в диапазоне 3.0-4.0 мкм (99.5%). Это зеркало можно было перемещать вдоль оси резонатора с помощью юстировочного устройства. Сапфировая пластинка П1 находилась под углом, близким к углу нормального падения относительно оси резонатора, и отражала около 15% излучения из резонатора в спектральный прибор или на измеритель мощности. Германиевая пластинка П2 использовалась для селекции длины холостой волны. Линзы Л1 и Л2 уменьшали расходимость излучения ЛН. Линза ЛЗ (с фокусным расстоянием 250 мм) фокусировала излучение накачки в кристалл PPLN. Диаметр пучка накачки в перетяжке составлял 160 мкм.

Экран служил для наблюдения режима суперлюминесценции, когда резонатор отсутствовал и генерация возникала за один проход в нелинейном кристалле. Кристалл находился в термостате, температура которого регулировалась с помощью ПИД-регулятора. В качестве СП использовались панорамный спектрометр STS-VIS и монохроматор МДР-23 (входная и выходная щели монохроматора 50 мкм, обратная линейная дисперсия 1.2 нм/мм) с фотоумножителем ФЭУ-68. Контроль и измерение мощности на длине холостой волны осуществлялись пироэлектрическим фотоприемником или измерителем мощности ИМО типа Thorlabs s302с.

3. Результаты экспериментов

Перестройка ПГС осуществлялась изменением температуры кристалла от 20 до 150 °С. При двукратном превышении порога генерации ПГС была измерена зависимость его выходной мощности от отстройки длины резонатора лазера накачки ΔL_p , представленная на рис.2, где $\Delta L_p = 0$ соответствует «моноимпульсному» режиму генерации Nd: YAG-лазера, при котором более 95% составляли одиночные пикосекундные импульсы, а ~5% – двойные. Поскольку при моноимпульсном режиме (пиковая

Рис.2. Зависимость выходной мощности P_{idle} на длине холостой волны от отстройки выходного зеркала резонатора лазера накачки ΔL_p .

интенсивность накачки доходила до 10 ГВт/см²) в кристалле наблюдались нежелательные эффекты («серые треки», поверхностное и объемное разрушения), дальнейшие измерения проводились при отстройках выходного зеркала лазера накачки $\Delta L_p = 300$ мкм (в этом случае лазер накачки генерировал ~53% одиночных, 37% двойных и ~10% тройных импульсов) и 700 мкм (25% одиночных, 45% двойных, 20% тройных и 10% четверных импульсов).

На рис.3 представлены зависимости мощности сигнальной волны в ПГС-резонаторе P_{sign} (кривая *1*) и выходной мощности холостой волны P_{idle} (кривая *2*) от средней мощности накачки P_{p} с сапфировой пластинкой и зависимость выходной мощности холостой волны (кривая *3*) без этой пластины при комнатной (~25 °C) температуре кристалла PPLN на дорожке с периодом 30 мкм. Пороговая мощность накачки была равна ~100 мВт во всем заданном температуры кристалла.

Рис.3. Зависимости выходной мощности холостой волны P_{idle} и мощности сигнальной волны в резонаторе P_s от средней мощности накачки при $\Delta L_p = 300$ мкм; l, 2 – мощность сигнальной волны в резонаторе ПГС и выходная мощность холостой волны с пластинкой П1 соответственно; 3 – выходная мощность холостой волны без пластинки.

Излучение сигнальной волны выводилось из резонатора с помощью сапфировой пластинки (полные потери на отражение от граней пластины ~30%). Часть излучения попадала на измеритель мощности со светофильтром на диапазон 1.4–1.6 мкм, и по ней определялась мощность в резонаторе. Для увеличения КПД преобразования накачки в холостую волну из резонатора вынималась пластинка П1. При этом выходная средняя мощность на длине холостой волны достигала 12 мВт.

Была измерена также прошедшая через ПГС мощность накачки P_{out} (с учетом пропускания зеркала 33) в зависимости от мощности падающего излучения P_p , а из полученных данных было рассчитано поглощение накачки $k = 1 - \alpha - P_{out}/P_{in}$, где α – потери на зеркалах в резонаторе ПГС, составившие 10% (в основном на зеркале с медным покрытием). Поглощение накачки было равно ~50%. Таким образом, КПД преобразования для холостой волны по поглощенной мощности был равен ~10%. Следует отметить, что поглощение накачки и выходную мощность можно увеличить путем увеличения длины нелинейного кристалла PPLN.

Для эффективной генерации параметрического излучения необходимо обеспечить согласование межмодовой частоты резонатора ПГС с межмодовой частотой лазера накачки, что достигалось выбором одинаковых длин резонаторов лазера накачки ($L_0 \approx 1.5$ м) и ПГС. Точное их согласование осуществлялось перемещением зеркала 33 вдоль оси резонатора ПГС. На рис.4 представлены зависимости выходной мощности от изменения длины резонатора ПГС δ при различных отстройках ΔL_p . Видно, что

Рис.4. Зависимости относительной выходной мощности холостой волны P_{idle} от изменения длины резонатора ПГС δ при отстройке резонатора лазера накачки 300 (*a*) и 700 мкм (δ).

при увеличении $\Delta L_{\rm p}$ с 300 до 700 мкм ширина кривой на полувысоте увеличивается с 8 до 10 мм.

На двух дорожках с периодами 30 и 29.5 мкм кристалла PPLN была измерена перестроечная температурная характеристика для длины сигнальной волны. На основе этих данных была рассчитана перестроечная характеристика для длины холостой волны. Полученные перестроечные характеристики в диапазоне 1.48 – 1.55 мкм и 3.4 – 3.8 мкм изображены на рис.5. При изменении температуры кристалла на $\Delta T = 130$ °C холостая и сигнальная длины волн перестраиваются на ~400 и ~70 нм соответственно. Измеренная при комнатной температуре на дорожке с периодом 30 мкм ширина линии генерации сигнальной волны составила 13 см⁻¹ (или 390 ГГц).

Параметрическая генерация имела место и в режиме суперлюминесценции, когда перед выходным зеркалом 33 помещался непрозрачный экран. В обоих случаях, помимо холостой и сигнальной волн, в спектре выходного излучения присутствовали линии в видимом диапазоне. Однако в режиме параметрической генерации линии были значительно сильнее.

Все измерения в видимом диапазоне проводились в режиме устойчивого резонатора (т.е. экран перед зеркалом 33 отсутствовал) на дорожке с периодом 30 мкм. Спектрограмма в диапазоне 350-830 нм при комнатной температуре кристалла представлена на рис.6. Наряду с линиями генерации вторых гармоник от накачки (532 нм) и сигнальной волны (754 нм) были получены спектральные линии с центральными длинами волн 624, 463, 442, 392 и 354.7 нм. Линии 1-4 на рис.6 более широкие из-за меньшей разрешающей способности (~2 нм) панорамного спектрометра. Также необходимо отметить, что на входе спектрометра STS-VIS помещался светофильтр ПС-15, ослаблявший линии на 532 и 624 нм в 40 и 30 раз соответственно.

Ширины линий измерялись с помощью монохроматора МДР-23. Они составили: $\Delta v_{355} \approx 250 \ \Gamma\Gamma\mu$, $\Delta v_{392} \approx 360 \ \Gamma\Gamma\mu$, $\Delta v_{442} \approx 350 \ \Gamma\Gamma\mu$, $\Delta v_{463} \approx 230 \ \Gamma\Gamma\mu$, $\Delta v_{532} \approx 200 \ \Gamma\Gamma\mu$, $\Delta v_{624} \approx 400 \ \Gamma\Gamma\mu$ и $\Delta v_{822} \approx 230 \ \Gamma\Gamma\mu$.

Рис.5. Перестроечная характеристика кристалла PPLN на двух дорожках с периодами 29.5 и 30 мкм.

Рис.6. Панорама спектра выходного излучения в диапазоне 350–830 нм: *1* – линия 822 нм; *2* – 754 нм; *3* – 624 нм; *4* – 532 нм; *5* – 463 нм; *6* – 442 нм; 7 – 392 нм; *8* – 354.7 нм. На вставке показаны линии, полученные с монохроматором МДР-23.

КПД преобразования (по поглощенной мощности накачки) для излучения линий 619, 532, 436 и 392 нм был измерен при изменении температуры кристалла. В этом случае в качестве спектрального прибора использовались дифракционная решетка и измеритель мощности Ophir Vega (PD300). В табл.1 представлены КПД преобразования η , полученные при разных температурах.

Изменение длин волн линий видимого диапазона при изменении температуры нелинейного кристалла показано на рис.7.

Рис.7. Перестроечные характеристики кристалла PPLN на длинах волн 442 и 463 нм (a), а также на 624 нм (δ).

Габл.1.					
<i>T</i> (°C)	$\eta_{624}(\%)$	$\eta_{532}(\%)$	η_{442} (%)	$\eta_{392}(\%)$	
137	0.09	0.12	0.06	0.13	
97	0.06	0.19	0.04	0.09	
23.5	0.05	0.05	0.04	0.08	

4. Анализ полученных результатов

Главной особенностью квазисинхронного взаимодействия является то, что передача энергии от волны накачки к холостой и сигнальной волнам в принципе должна эффективно происходить на всей длине нелинейного кристалла. Согласно [5] при трехкратном превышении накачки над порогом в случае гауссовых пучков обеднение накачки составляет 50%, что согласуется с нашими экспериментальными данными. Коэффициент усиления на один проход в приближении больших интенсивностей в случае гауссовых пучков при оптимальной фокусировке определяется [6, 7] как

$$G \approx \frac{1}{4} \mathrm{e}^{2\Pi},$$

где удельный коэффициент усиления

$$\Gamma = 2\pi d_{\rm eff} \sqrt{\frac{2g_{\rm s}g_{\rm t}I_{\rm p}k}{n_{\rm s}n_{\rm i}n_{\rm p}\varepsilon_0c\lambda_{\rm s}\lambda_{\rm i}}};$$

 $n_{\rm s,i,p}$ – показатели преломления кристалла PPLN на длинах сигнальной и холостой волн и волны накачки соответственно; $d_{\rm eff}$ – коэффициент эффективной нелинейности кристалла PPLN; l = 20 мм – длина кристалла PPLN; $\lambda_{\rm p,s,i}$ – длина волны излучения накачки, сигнальной и холостой волн соответственно; c – скорость света; ε_0 – диэлектрическая проницаемость; $I_{\rm p}$ – плотность мощности накачки в перетяжке кристалла (радиус перетяжки $w_{\rm p}$); $g_{\rm s} = w_{\rm p}^2/(w_{\rm s}^2 + w_{\rm p}^2)$, $g_{\rm t} = \sqrt{\tau_{\rm p}^2/(\tau_{\rm s}^2 + \tau_{\rm p}^2)}$ (в нашем случае $g_{\rm s} = 0.9$ и $g_{\rm t} = 0.86$); k = 0.5 – коэффициент истощения накачки; $\tau_{\rm p,s}$ – длительности импульсов накачки и длины сигнальной волны соответственно. При $I_{\rm p} \approx 2$ ГВт/см² (соответствует

 $\Delta L_{\rm p} = 300$ мкм и $w_{\rm p} \approx 80$ мкм), $d_{\rm eff} = 14$ пм/В и $\lambda_{\rm s} = 1.51$ мкм коэффициент усиления $G \approx 3 \times 10^{12}$.

С учетом того, что средняя выходная мощность $P_{idle} = 12$ мВт, а импульс излучения на холостой и сигнальной длинах волн укорачивается согласно [8] до ~30 пс, выходная пиковая мощность

$$P_{\rm m} = \frac{P_{\rm idle}}{NF\tau_{\rm i}} 0.64 \approx 25 \text{ kBr},$$

где N – количество пикосекундных импульсов в цуге на его полувысоте; F – частота следования цуга импульсов; коэффициент 0.64 – поправка на немоноимпульсность.

Обратимся к результатам рис.4. В условиях синхронной накачки ПГС (см. напр., [9]), ширина отстройки резонатора δ обычно составляет (1/20-1/10) $c\tau_{\rm p}$. Ширина отстройки резонатора ПГС с синхронной накачкой наряду с тр определяется также дисперсией групповых скоростей импульсов накачки и сигнальной волны. В работе [10] компенсацией дисперсии резонатора дифракционной решеткой δ увеличили до ~0.25 $c\tau_{\rm p}$. В нашем случае $\delta \sim c\tau_{\rm p}$ без использования элементов компенсации дисперсии, и это не совсем обычный результат. Увеличенная ширина кривых на рис.4 является следствием малого временного интервала между импульсами (по сравнению с временем двойного обхода резонатора в немоноимпульсном режиме). Можно ожидать, что при больших частотах следования импульсов накачки (свыше 10 ГГц) отстройка резонатора ПГС не будет влиять на мощность генерации.

Полученные спектральные линии в ближнем УФ и видимом диапазонах есть результат процессов смешения частот волны накачки (ω_p) и сигнальной волны (ω_s), возникающих в нелинейном кристалле:

 $2\omega_{\rm p} = \omega_{532}, \ 2\omega_{\rm s} = \omega_{754}, \ \omega_{\rm p} + \omega_{\rm s} = \omega_{624}, \ 3\omega_{\rm p} - \omega_{\rm s} = \omega_{463},$

 $\omega_{\rm p} + 2\omega_{\rm s} = \omega_{442}, 2\omega_{\rm p} + \omega_{\rm s} = \omega_{392}, 3\omega_{\rm p} = \omega_{355}, 2\omega_{\rm p} - \omega_{\rm s} = \omega_{822}.$

При изменении температуры кристалла линии, в генерации которых участвовала сигнальная волна, смещались за счет ее перестройки (см. рис.7). Линии 624 и 442 нм наблюдались ранее [11. 12]. Перестраиваемые линии 392, 463 и 822 нм наблюдались впервые.

Как было указано, КПД преобразования в излучение на длине холостой волны составил $\sim 10\%$. Он снижается

за счет процессов смешения частот, а также генерации второй и третьей гармоник. Этот КПД может снижаться вследствие генерации не только зарегистрированных, но и других линий, например линии $3\omega_p + \omega_s = \omega_{286}$, которая поглощается самим нелинейным кристаллом.

Эффективность преобразования перестраиваемых линий в видимом и УФ диапазонах может быть повышена путем изготовления кристалла PPLN в виде двух или трех отдельных секций, каждая из которых имеет свой период. В работе [11] таким способом на линии 624 нм получен КПД преобразования 21% в непрерывном режиме.

Таким образом, в настоящей работе исследованы основные особенности ПГС на основе кристалла PPLN с синхронной накачкой излучением Nd:YAG-лазера с модуляцией добротности резонатора и синхронизацией мод методом C3AOM. В частности выяснено, что при использовании этого метода требования к точности согласования длин резонаторов лазера накачки и ПГС существенно снижаются. Помимо сигнальной (1.48 – 1.55 мкм) и холостой (3.4 – 3.8 мкм) длин волн, в спектре выходного излучения наблюдались линии с длинами волн 822, 754, 624, 532, 463, 442, 392 и 355 нм. Перестраиваемые линии 392, 463 и 822 нм наблюдались впервые. Измерены диапазоны перестройки новых линий (5–10 нм) и объяснено их происхождение.

Авторы выражают благодарность Д.Б.Колкеру за любезно предоставленное зеркало на ZnSe-подложке и полезное обсуждение.

- 1. Peng Y., Wei X., Wang W., Li D. Opt. Commun., 283, 4032 (2010).
- Anstett G., Ruebel F., L'huillier J.A. Proc. SPIE Int. Soc. Opt. Eng., 7483, 74830A (2009).
- 3. Donin V.I., Yakovin D.V., Gribanov A.V. Opt. Lett., 37, 338 (2012).
- Донин В.И., Яковин Д.В., Грибанов А.В. Квантовая электропика, 45, 1117 (2015).
- 5. Bjorkholm J.E. IEEE J. Quantum Electron., 7, 109 (1971).
- 6. Harris S.E. Proc. IEEE, 57, 2096 (1969).
- 7. McCarthy M.J., Hanna D.C. J. Opt. Soc. Am. B, 10, 2180 (1993).
- Becker M.F., Kuizenga D.J., Phillion D.W., et al. J. Appl. Phys., 45, 3996 (1974)
- Graf T., McConnell G., Fergusson A., et al. Appl. Opt., 38, 3324 (1999).
- Laporte C., Dherbecourt J., Melkonian J., et al. J. Opt. Soc. Am. B, 31. 1026 (2014).
- Bosenberg W.R., Alexander J.I., Myers L.E., et al. Opt. Lett., 23, 207 (1998)
- 12. Abu-Safe H.H. Appl. Opt., 44, 7458 (2005).