УДК 538.911

МОЛЕКУЛЯРНО-ЛУЧЕВАЯ ЭПИТАКСИЯ ТВЁРДОГО РАСТВОРА InAsSb: ВЛИЯНИЕ СКОРОСТИ РОСТА НА СОСТАВ ЭПИТАКСИАЛЬНЫХ СЛОЁВ

© Е. А. Емельянов, М. О. Петрушков, М. А. Путято, И. Д. Лошкарев, А. В. Васев, Б. Р. Семягин, В. В. Преображенский

Институт физики полупроводников им. А. В. Ржанова СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 13 E-mail: e2a@isp.nsc.ru

Экспериментально исследовано влияние скорости роста (плотности потока атомов In) на состав твёрдых растворов $InAs_xSb_{1-x}(100)$ при молекулярно-лучевой эпитаксии с использованием потоков молекул As_2 и Sb_4 . Установлено, что увеличение скорости роста при постоянном значении доли молекул As_2 и Sb_4 в потоке молекул группы V и неизменном отношении потока атомов индия к суммарному потоку молекул элементов группы V приводит к уменьшению доли мышьяка в твёрдом растворе. Показано, что скорость роста является самостоятельным параметром процесса молекулярно-лучевой эпитаксии, определяющим состав твёрдых растворов $InAs_xSb_{1-x}$. Предложен механизм формирования состава твёрдого раствора, объясняющий роль скорости роста.

Ключевые слова: молекулярно-лучевая эпитаксия, твёрдые растворы $InAs_xSb_{1-x}$, скорость роста, рентгеноструктурный анализ.

DOI: 10.15372/AUT20200507

Введение. Твёрдые растворы соединений А^{III}В^V позволяют значительно расширить круг задач, решаемых методом зонной инженерии при создании фотоприёмников, работающих в различных областях спектра электромагнитного излучения.

Особый интерес сегодня вызывают фотоприёмники среднего и дальнего ИК-диапазонов на основе напряжённых короткопериодных сверхрешёток (НКСР) InAs/InAs_xSb_{1-x}, которые в ряде применений могут конкурировать с фотоприёмниками на основе твёрдых растворов CdHgTe [1]. Состав твёрдого раствора и толщины отдельных слоёв НКСР определяют спектральную область работы фотоприёмника. В настоящее время гетероструктуры приборного качества для таких фотоприёмников могут быть получены только методом молекулярно-лучевой эпитаксии (МЛЭ) [2].

При выращивании НКСР гетероструктур методом МЛЭ решается ряд взаимосогласованных задач: получение заданного состава твёрдого раствора $InAs_xSb_{1-x}$ при обеспечении требуемого качества отдельных слоёв гетероструктуры и высокого совершенства гетерограниц между ними. Сложность нахождения согласованного решения обусловлена тем, что на состав твёрдого раствора $InAs_xSb_{1-x}$ оказывают влияние температура роста (T_s) , величины и соотношения молекулярных потоков, а также молекулярные формы элементов в этих потоках [3–5]. При выборе условий роста для формирования отдельных слоёв НКСР с заданными свойствами и совершенными гетерограницами между ними ключевым параметром является скорость роста (V_q) .

В литературе есть данные о влиянии V_g на состав твёрдых растворов GaAs_xSb_{1-x}[6] и InAs_xSb_{1-x} [7]. Однако сделать однозначный вывод о степени и характере влияния V_g на состав твёрдых растворов на основании экспериментальных данных, представленных в этих работах, нельзя, так как при изменении скорости роста не сохранялось постоянным отношение потоков атомов третьей ($J_{\rm III}$) и молекул пятой ($J_{\rm V}$) групп. Это связано с тем, что в методе МЛЭ V_g однозначно задаётся $J_{\rm III}$. Но изменение плотности потока атомов третьей группы ведёт к изменению другого важного параметра процесса МЛЭ — отношения $J_{\rm III}/J_{\rm V}$, которое отражает эффективность встраивания молекул пятой группы. Величины $J_{\rm III}/J_{\rm V}$ и T_s определяют сверхструктурное состояние поверхности, а также состав и плотность адсорбционных слоёв, которые, в свою очередь, оказывают влияние на процесс формирования состава твёрдого раствора в подрешётке пятой группы, т. е. изменение $J_{\rm III}$ ведёт к изменению двух важных параметров процесса МЛЭ, которые могут оказывать влияние на состав эпитаксиальной плёнки: V_g и отношение $J_{\rm III}/J_{\rm V}$ в потоке. Важно знать, какова роль каждого из этих параметров в процессе формирования состава твёрдого раствора в процессе формирования состава твёрдого из этих параметров в процессе формирования состава твёрдого раствора в процессе формирования состава твёрдого из этих параметров в процессе формирования состава твёрдого раствора в процессе формирования состава твёрдого из этих параметров в процессе формирования состава твёрдого из этих параметров в процессе формирования состава твёрдого раствора в подрешётке пятой состава твёрдого раствора в подрешётке пятой состава твёрдого раствора в подрешётке пятой состава твёрдого раствора в процессе формирования состава твёрдого раствора в подрешётке пятой состава твёрдого раствора в процессе формирования состава твёрдого раствора в подрешётке пятой состава состава твёрдого раствора в подрешётке пятой состава состава состава твёрдого раствора в подрешётке пятой состава соста

Для описания состояния поверхностей полупроводников (материалов) ${\rm A}^{\rm III}{\rm B}^{\rm V}$ как функции T_s, J_V и $J_{\rm III}$ используют фазовые диаграммы поверхности. На них в координатах $\ln(J_V) - 1/T_s$ обозначены области существования поверхностных структур (ПС), разделённые линиями переходов между ПС [8]. На динамических фазовых диаграммах показаны области существования ПС в условиях роста. Линии динамической фазовой диаграммы имеют два чётко выраженных участка: крутой участок в области высоких температур роста и пологий участок в области более низких температур роста. Вдоль пологой ветви значение $J_{\rm HI}/J_{\rm V}$ асимптотически стремится к максимально возможному значению коэффициента встраивания молекул при МЛЭ для данной ПС. В таких условиях состояние поверхности оказывается крайне чувствительным к отношению $J_{\rm HI}/J_{\rm V}$. Поэтому для поддержания требуемого состояния поверхности при изменении скорости роста необходимо сохранять неизменным значение данного параметра. В области высоких температур граница существования ПС асимптотически стремится к линии статической фазовой диаграммы. Влияние отношения $J_{\rm HI}/J_{\rm V}$ на состояние поверхности выражено слабо по сравнению с областью более низких значений T_s. Существует и переходная область, в которой в близких долях реализуются оба механизма контроля состояния поверхности при $T_s = \text{const.}$ Но в любом случае при МЛЭ твёрдого раствора $InAs_xSb_{1-x}$ не учитывать влияние отношения $J_{\rm HI}/J_{\rm V}$ на состояние поверхности нельзя, особенно в области относительно невысоких значений T_s, которые являются предпочтительными для выращивания твёрдого раствора.

В представленной работе были проведены эксперименты по определению влияния скорости роста на состав твёрдого раствора $InAs_xSb_{1-x}$ при МЛЭ с использованием потока молекул As₂ и Sb₄. При изменении J_{In} поддерживались неизменными значения отношений (J_{Sb_4}/J_{As_2}) и $J_{In}/(J_{Sb_4} + J_{As_2})$.

Целью данной работы являлось определение влияния скорости роста на состав твёрдого раствора $InAs_xSb_{1-x}$ при МЛЭ.

Эксперимент. Эксперименты выполнены на модернизированной установке МЛЭ «Штат». Плёнки твёрдых растворов $InAs_xSb_{1-x}$ выращивались на подложках GaAs(001) из потоков молекул As₂, Sb₄ и атомов In. Поток As₂ формировался источником вентильного типа с зоной крекинга. Потоки In и Sb₄ формировались тигельными источниками с заслонками. Плотность потоков молекул элементов пятой группы определялась с помощью ионизационного манометрического преобразователя типа Байярда — Альперта, который помещался во время измерения на позицию подложки [9]. Для калибровки показаний преобразователя при измерении абсолютной величины потока мышьяка использовалась фазовая диаграмма поверхности GaAs(001) [10]. Процедура калибровки осуществлялась по методике, описанной в работе [11]. Калибровка преобразователя по потоку Sb₄ проводилась по методике, представленной в [12]. Плотность потока атомов In определялась по скорости роста InAs(001), измеренной по осцилляциям зеркального рефлекса картины дифракции быстрых электронов на отражение в отдельном эксперименте. Подложка для выращивания структур закреплялась к танталовому носителю с помощью индия. Управление температурой подложки осуществлялось по показаниям термопары, размещённой в

Таблица 1

Образец	$V_g, MC/c$	$\begin{array}{c}J_{\mathrm{In}},\\\mathrm{cm}^{-2}\cdot\mathrm{c}^{-1}\end{array}$	$\bigcup_{\mathrm{CM}^{-2} \cdot \mathrm{C}^{-1}}^{J_{\mathrm{As}},}$	$\bigcup_{\mathrm{CM}^{-2} \cdot \mathrm{c}^{-1}}^{J_{\mathrm{Sb}},}$	$J_{ m In}/(J_{ m Sb}+J_{ m As})$	$J_{ m Sb}/J_{ m As}$	x
St 1	2	$9,4 \cdot 10^{14}$	$3,7\cdot10^{14}$	10^{15}	0,67	2,7	0,278
St 2	1	$4,4 \cdot 10^{14}$	$2,1 \cdot 10^{14}$	$5,\!6\cdot 10^{14}$	0,59	2,7	0,326
St 3	0,5	$2,3\cdot10^{14}$	10^{14}	$2,8 \cdot 10^{14}$	0,59	2,8	0,332
St 4	0,25	$1,1\cdot 10^{14}$	$5,9\cdot10^{13}$	$1,5 \cdot 10^{14}$	0,53	2,6	0,443

Параметры роста и состав выращенных образцов

нагревательном элементе манипулятора (прямой тепловой контакт термопары с образцом отсутствовал). Калибровка термопары выполнялась по температурам переходов между поверхностными сверхструктурами с $(4 \times 4) \rightarrow (2 \times 4)$ (395 °C) и $(2 \times 4) \rightarrow (3 \times 1)$ (500 °C) на поверхности GaAs(100) в условиях отсутствия падающих потоков [9]. Толщина выращенных плёнок InAs_xSb_{1-x} 500 нм. Состав твёрдого раствора определялся методом рентгеновской дифрактометрии высокого разрешения. Запись кривых дифракционного отражения осуществлялась на двухкристальном рентгеновском дифрактометре высокого разрешения с германиевым кристаллом-монохроматором в положении симметричного отражения (004) и выходной щелью коллиматора размером 0,1 мм в плоскости дифракции.

Была выращена серия из четырёх образцов при $T_s = 380$ °C и различных $V_g = 0.25$, 0,5, 1 и 2 монослоя в секунду (MC/c). Образцы выращивались при постоянных отношениях потоков пятой группы к третьей в атомарном выражении $J_{\rm In}/(J_{\rm Sb} + J_{\rm As}) \sim {\rm const}$ и между потоками пятой группы $J_{\rm Sb}/J_{\rm As} \sim {\rm const}$ (табл. 1).

Результаты и обсуждение. В табл. 1 приведены данные по условиям выращивания образцов твёрдого раствора и по полученной доле мышьяка x в них. Точность поддержания отношения $J_{\rm Sb}/J_{\rm As}$ от образца к образцу составляла $\pm 3,7$ %, а отношение $J_{\rm In}/(J_{\rm Sb} + J_{\rm As})$ равнялось $\pm 13,3$ %. Доля мышьяка x в твёрдом растворе уменьшилась в 1,6 раза при увеличении скорости роста от 0,25 до 2 MC/c (рис. 1). Таким образом, на основании полученных результатов можно заключить, что скорость роста является самостоятельным параметром процесса формирования состава твёрдых растворов при МЛЭ InAs_xSb_{1-x}.

В [6, 7] приводятся данные по влиянию V_g на состав твёрдых растворов GaAs_xSb_{1-x} и InAs_xSb_{1-x}. Важно отметить, что, фиксируя значение J_{Sb}/J_{As} , авторы не поддерживали постоянным соотношение $J_{III}/(J_{Sb} + J_{As})$ при варьировании V_g . Поэтому в [6] наблюда-

Рис. 1. Доля мышьяка в твёрдом растворе $InAs_xSb_{1-x}$ в зависимости от V_q

Puc. 2. Схема процессов, протекающих в области роста. Штрихами выделен вновь сформировавшийся участок террасы

ется немонотонная зависимость доли x от V_g — при увеличении V_g наблюдается сначала снижение, а затем увеличение доли As в GaAs_xSb_{1-x}.

Рассмотрим механизм формирования твёрдого раствора $InAs_xSb_{1-x}$ при МЛЭ, объясняющий полученное влияние V_g на его состав. Представим эпитаксиальный рост как двумерно-слоевой процесс (рис. 2), при котором рост плёнки идёт путём встраивания атомов и молекул в края террас. Область роста локализована вдоль ступеней и имеет небольшую протяжённость в направлении движения ступеней [13]. Поверхность террас реконструирована. Верхний слой такой поверхности состоит из атомов мышьяка и сурьмы, хемосорбированных на атомах In, занимающих свои позиции в узлах плоскости (001). Атомы мышьяка и сурьмы объединены в димеры, образующие сверхструктуру поверхности. Сначала в областях роста формируются участки поверхности, состоящие из слоя атомов индия и хемосорбированных на нём димеров мышьяка и сурьмы, образующих реконструированный слой. Доля атомов мышьяка и сурьмы в реконструированном слое задаётся условиями роста. На вновь сформированной поверхности протекают процессы десорбции димеров мышьяка и сурьмы из реконструированного слоя и обратный процесс хемосорбции молекул As_2 и Sb_4 из поступающего потока на образующихся вакансиях, а также процесс замещения димеров сурьмы димерами мышьяка из молекулярного потока. Эти процессы меняют соотношение числа атомов мышьяка и сурьмы, входящих в состав сверхструктуры. Изменение состава длится до прихода области роста, лежащей выше террасы. В

области роста на вновь хемосорбированных атомах In формируется новый участок поверхности. Атомы элементов пятой группы, на которых хемосорбировались атомы индия, встраиваются в кристаллическую решётку твёрдого раствора и перестают принимать участие в процессах десорбции/адсорбции, т. е. состав кристалла фиксируется.

Время, в течение которого происходит изменение концентраций хемосорбированных молекул мышьяка и сурьмы в фиксированной точке реконструированной поверхности, определяется временем роста одного монослоя (τ). Если τ достаточно велико, то к приходу очередного фронта роста успеют установиться стационарные значения концентраций димеров As и Sb. Если значение V_g достаточно велико, а T_s относительно невысока, то за время τ стационарные концентрации химически связанных димеров мышьяка и сурьмы установиться не успеют. В таком случае доли хемосорбированных димеров мышьяка и сурьмы в каждой точке поверхности будут циклически меняться со временем. При этом разница в составе хемосорбированного слоя димеров элементов группы V в начале и конце каждой террасы будет тем больше, чем ниже V_g и выше T_s .

Заключение. В представленной работе были проведены эксперименты по влиянию скорости роста слоёв твёрдого раствора $InAs_xSb_{1-x}$ методом МЛЭ на их состав при неизменных значениях отношений между потоками группы V J_{Sb}/J_{As} и групп V и III $J_{In}/(J_{Sb} + J_{As})$. Установлено, что скорость роста является самостоятельным параметром процесса МЛЭ, влияющим на состав твёрдых растворов $InAs_xSb_{1-x}$ в подрешётке пятой группы, и обсуждён механизм данного влияния.

Финансирование. Работа выполнена при поддержке Министерства науки и высшего образования РФ (государственное задание № 0306-2020-0010, грант № 075-15-2020-797 (13.1902.21.0024)) и Российского фонда фундаментальных исследований (грант № 18-29-20007).

СПИСОК ЛИТЕРАТУРЫ

- Rogalski A., Martyniuk P., Kopytko M. InAs/GaSb type-II superlattice infrared detectors: Future prospect // Appl. Phys. Rev. 2017. 4, N 3. 031304.
- Michalczewski K., Kubiszyn L., Martyniuk P. et al. Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate // Infrar. Phys. & Technol. 2018. 95. P. 222–226.
- 3. Semenov A., Sorokin V., Solov'ev V. et al. Special features of Sb₂ and Sb₄ incorporation in MBE-grown AlGaAsSb alloys // Semiconductors. 2004. **38**. P. 266–272.
- Marcadet X., Rakovska A., Prevot I. et al. MBE growth of room-temperature InAsSb mid-infrared detectors // Journ. Crystal Growth. 2001. 227. P. 609–613.
- 5. Emel'yanov E. A., Vasev A. V., Semyagin B. R. et al. InAsSb on GaAs (001): Influence of the arsenic molecules form on composition and crystalline properties of MBE layers // Journ. Phys.: Conf. Ser. 2015. 643, Iss. 1. 012006.
- 6. Zederbauer T., Andrews A. M., MacFarland D. et al. Incorporation of Sb and As in MBE grown GaAs_xSb_{1-x} layers // APL Materials. 2017. 5, N 3. 035501.
- Sarney W. L., Svensson S. P. Flux dependent Sb-incorporation during molecular beam epitaxy of InAsSb // Journ. Vacuum Sci. & Technol. B. 2015. 33, N 6. 060604.
- 8. Preobrazhenskii V. V., Lubyshev D. I., Reginski K., Muszalski J. The effect of the MBE growth rate on the surface phase diagram for GaAs (001) // Thin Solid Films. 1995. 267. P. 51–53.
- Preobrazhenskii V. V., Putyato M. A., Pchelyakov O. P., Semyagin B. R. Experimental determination of the incorporation factor of As₄ during molecular beam epitaxy of GaAs // Journ. Crystal Growth. 1999. 201/202. P. 170–173.

- Preobrazhenskii V. V., Putyato M. A., Pchelyakov O. P., Semyagin B. R. Surface structure transitions on (001) GaAs during MBE // Journ. Crystal Growth. 1999. 201/202. P. 166–169.
- 11. **Преображенский В. В., Путято М. А., Семягин Б. Р.** Контроль параметров процесса молекулярно-лучевой эпитаксии GaAs при низких температурах роста // Физика и техника полупроводников. 2002. **36**, № 8. С. 897–901.
- Waterman J. R., Shanabrook B. V., Wagner R. J. Reflection high-energy electrondiffraction study of Sb incorporation during molecular-beam epitaxy growth of GaSb and AlSb // Journ. Vacuum Sci. & Technol. B. 1992. 10, N 2. P. 895–897.
- Tsao J. Y., Brennan T. M., Klem J. F., Hammons B. E. Surface-stoichiometry dependence of As-2 desorption and As-4 reflection from GaAs(001) // Journ. Vacuum Sci. & Technol. A-Vacuum Surfaces and Films. 1989. 7, N 3. P. 2138–2142.

Поступила в редакцию 11.08.2020 После доработки 04.09.2020 Принята к публикации 07.09.2020