УДК 539.1.044, 539.1.06, 535-34, 66.08, 537.86.029

РЕАЛИЗАЦИЯ ТЕРАГЕРЦОВЫХ ФИЛЬТРОВ ВЫСОКИХ ЧАСТОТ НА ОСНОВЕ ЦЕЛЬНОМЕТАЛЛИЧЕСКИХ МИКРОСТРУКТУР С ИСПОЛЬЗОВАНИЕМ ГЛУБОКОЙ РЕНТГЕНОЛИТОГРАФИИ

© А. Н. Генцелев¹, С. А. Кузнецов^{1,2,3}, Ф. Н. Дульцев^{3,4}, Б. Г. Гольденберг¹, А. Г. Зелинский⁵, В. И. Кондратьев¹, Д. С. Таныгина^{2,6}

 ¹ Институт ядерной физики им. Г. И. Будкера СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 11
² Новосибирский филиал Института физики полупроводников им. А. В. Ржанова СО РАН «Конструкторско-технологический институт прикладной микроэлектроники», 630090, г. Новосибирск, просп. Академика Лаврентьева, 2/1
³ Новосибирский государственный университет, 630090, г. Новосибирск, ул. Пирогова, 2
⁴ Институт физики полупроводников им. А. В. Ржанова СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 13
⁵ Институт физики полупроводников им. А. В. Ржанова СО РАН, 630128, г. Новосибирск, ул. Кутателадзе, 18
⁶ Дальневосточный федеральный университет, 690091, г. Владивосток, ул. Суханова, 8 E-mail: ang1209@mail.ru

Описывается методика создания квазиоптических фильтров высоких частот терагерцового диапазона на базе толстых (толщиной до 1 мм) самонесущих медных микроструктур субволновой топологии. Методика основана на рентгенолитографическом формировании высокоаспектной резистивной маски из рентгенорезиста SU-8 на кремниевой подложке с использованием вольфрамового рентгеношаблона и последующим гальваническим вырациванием медного слоя через резистивную маску. Рассмотрен пример структуры толщиной 212 мкм с частотой отсечки 0,42 ТГц, имеющей топологию гексагонально упакованных отверстий шестиугольной формы. Представлены результаты широкополосной ТГц-характеризации полученной структуры и её электродинамического анализа.

Ключевые слова: глубокая рентгеновская литография, LIGA-технология, микроструктуры, квазиоптические фильтры, терагерцовый диапазон.

DOI: 10.15372/AUT20190202

Освоение диапазона терагерцовых (ТГц) частот электромагнитного спектра (0,1– 10 ТГц) [1–4] делает актуальными задачи разработки и изготовления эффективных квазиоптических элементов для управления электродинамическими характеристиками пучков ТГц-излучения. С практической точки зрения данный спектральный диапазон, соответствующий интервалу длин волн 30–3000 мкм, удобно позиционирован между примыкающими к нему СВЧ- и ИК-областями, поскольку позволяет сочетать в терагерцовой аппаратуре инструментальные решения как оптической, так и микроволновой техники. Примером таких решений служат планарные металлические (или металлизированные) микроструктуры (ММС) субволновой топологии [5–18]. Являясь резонансными электродинамическими структурами плазмонного типа, подобные ММС обычно эксплуатируются в режиме, когда их характерные резонансные частоты лежат ниже точки возбуждения высших дифракционных гармоник, что отличает такие структуры от дифракционных решёток. Последнее достигается малостью периода расположения элементарных ячеек MMC в её латеральной плоскости в сравнении с характерной рабочей длиной волны.

Наряду с геометрией ячеек, определяющей комплексные коэффициенты пропускания (отражения) ММС на ТГц-частотах, толщина структуры служит дополнительным параметром, позволяющим контролировать её электродинамические свойства. В частности, в самонесущих высокоаспектных (под аспектным отношением a микроструктуры понимается отношение её толщины t к минимальному топологическому размеру w в латеральной плоскости: a = t/w; структура является высокоаспектной, если $a \ge 10$) MMC, сформированных сквозной перфорацией толстого металлического слоя (или диэлектрического слоя с последующей полной металлизацией его поверхности), сквозные отверстия эффективно работают как волноводы, препятствуя прохождению через структуру волн с частотой ниже волноводной отсечки, а также формируя необходимый набег фазы на толщине структуры. Данные особенности высокоаспектных ММС позволяют использовать их в качестве эффективных фильтров высоких частот [11, 12, 14, 15], полосовых фильтров с усиленным низкочастотным подавлением [11–13, 15–17], а также плоских линз для фокусировки излучения [15, 18]. По сравнению с низкоаспектными ММС [5–11] такие структуры имеют, как правило, более высокую лучевую стойкость при работе в ТГц-пучках большой мощности, меньшие ограничения на минимально допустимые топологические размеры ячеек ММС, а также устраняют необходимость использования многослойной конфигурации для достижения нужного электродинамического эффекта.

Отметим, что в силу дифракционных ограничений оптической литографии при производстве микроструктур наиболее эффективным подходом к реализации толстых высокоаспектных ММС является глубокая рентгеновская литография (ГРЛ) с применением жёсткого синхротронного излучения (СИ). Являясь базовым этапом LIGA-технологии [19, 20], ГРЛ позволяет формировать микроструктуры в широком диапазоне толщин: от единиц микрон до единиц миллиметров с аспектным отношением $a \approx 100$ и более. Такие возможности реализуются вследствие высокой проникающей способности жёсткого СИ в слои рентгеночувствительного материала, а также благодаря значительному уменьшению дифракционного размытия изображения при его литографической репликации из-за многократного уменьшения длины волны экспонирующего излучения. В Сибирском центре синхротронного и терагерцового излучения (СЦСТИ, Институт ядерной физики (ИЯФ) СО РАН, г. Новосибирск) работы по ГРЛ проводятся в поддиапазоне ультракоротких волн рентгеновского спектра ($\lambda \approx 0.5$ –3 Å), которые осуществляются на LIGA-станции, установленной на канале вывода СИ из электрон-позитронного накопителя ВЭПП-3 [21].

Первоначально отработка технологии изготовления ММС в СЦСТИ проводилась с применением рентгеношаблонов (они же LIGA-шаблоны) на основе кинескопных сеток из инвара толшиной ~ 200 мкм, характеризующихся высокой рентгеноконтрастностью в используемом поддиалазоне СИ (под контрастностью рентгеношаблона К понимается отношение между поглощаемыми плотностями мощности под его рентгенопрозрачными и непрозрачными участками). С помощью данных шаблонов и рентгенорезиста SU-8 были получены медные самонесущие ММС толщиной ~82 мкм [13] по технологии, описанной в работе [22]. Однако применённый подход оказался достаточно сложным, трудоёмким и потребовал задействования нестандартного технологического оборудования. Упрощения технологии производства микроструктур отчасти удалось добиться за счёт перехода к самонесущим структурам так называемого псевдометаллического типа (ПММС псевдометаллические микроструктуры) [13–15, 18]. Последние предполагали рентгенолитографическую перфорацию слоя полиметилметакрилата (ПММА) толщиной 1 мм с последующей металлизацией его поверхности, при этом в качестве LIGA-шаблона использовалась латунная или свинцовая фольга с вырезанным в ней с помощью лазера топологическим рисунком. К недостаткам полученных ПММС относятся: обусловленная лазерной

резкой неровность края структурных микроотверстий, ограниченная механическая прочность, недолговечность (вследствие естественного старения полимера), ограничение на плотность мощности падающих пучков ТГц-излучения.

Данная работа отражает развитие исследований по получению ГРЛ-структур для ТГц-приложений и технологии производства цельнометаллических MMC на примере ТГц-фильтров высоких частот, которые лишены вышеуказанных недостатков псевдометаллических микроструктур.

Технология изготовления цельнометаллических ММС. Конструктивно самонесущая ММС, рассматриваемая в предлагаемой работе, представляет собой круглую медную пластинку, в центральной части которой сформирован периодический массив из сквозных отверстий заданной геометрии. Пластинка может изготавливаться в двух вариантах: 1) с фиксацией на кремниевом кольце, что достигается путём удаления на финальной стадии центральной части исходной кремниевой подложки (с тыльной стороны) жидкостным или плазмохимическим травлением; 2) полностью свободной: в этом случае исходная кремниевая подложка полностью стравливается в водном растворе щёлочи.

Для изготовления медной MMC предлагается использовать стандартные операции планарной кремниевой технологии, широко применяемые в производстве полупроводниковых приборов. Предполагается следующая последовательность операций:

1. Формирование на рабочей поверхности Si-пластин адгезионных проводящих металлических подслоёв путём магнетронного напыления титана (~400 нм) и никеля (~20 нм).

2. Формирование посредством ГРЛ резистивной маски толщиной ~200–1000 мкм из негативного резиста SU-8. Её толщина определяет толщину изготавливаемой ММС. Для реализации данной операции необходимо наличие LIGA-шаблона с достаточно большой контрастностью ($K \ge 100$), поскольку даже незначительные потоки экспонирующего излучения способны привести к образованию нерастворимой приповерхностной резистивной «корки», пороговая доза образования которой ~1,5 Дж/см³, что составляет ≤ 1,5 % от типичной дозы ~100–150 Дж/см³, поглощённой на поверхности резиста [23]. Процесс изготовления LIGA-шаблона описан далее.

3. Гальваническое осаждение меди на рабочую поверхность пластины через резистивную маску.

4. Плазменное удаление резистивной маски.

5. Освобождение медной микроструктуры путём: a) удаления центральной части кремниевой пластины посредством плазмохимического травления или жидкостного травления с тыльной стороны; б) полного растворения кремниевой пластины в водном растворе щёлочи.

6. Восстановление меди и двустороннее магнетронное напыление защитного (антикоррозийного) алюминиевого покрытия на конечное изделие.

Проведённые исследования показывают, что описанный технологический маршрут может успешно применяться для производства медных ММС толщиной от 200 до 1000 мкм.

Технология изготовления LIGA-шаблона. Одним из основных инструментов ГРЛ является LIGA-шаблон, содержащий топологический рисунок реплицируемой структуры, выполненный из рентгеноконтрастного материала (как правило, тяжёлого металла). В общем случае топология LIGA-шаблона может не предполагать его самонесущесть (т. е. маскирующий слой шаблона формируется на рентгенопрозрачной несущей мембране), однако для LIGA-шаблонов самонесущей топологии технология изготовления может быть заметно упрощена. Так, в [14, 15, 18] при получении ПММС из слоя ПММА толщиной 1 мм изготовление самонесущих LIGA-шаблонов осуществлялось путём микрообработки (резки) металлической фольги толщиной 50 мкм сфокусированными импульсами лазерного излучения наносекундной длительности. Наилучшие результаты в плане шероховатости края резки (на уровне ±3 мкм) были получены при работе с латунной фольгой

Рис. 1. Пример LIGA-шаблона ТГц-фильтра высоких частот на основе латунной фольги толщиной 50 мкм, полученного лазерной резкой: a — внешний вид шаблона, закреплённого в опорном кольце (диаметр рабочей зоны шаблона 52 мм); b — фото, полученное с помощью сканирующего электронного микроскопа (СЭМ-фото) одной из элементарных ячеек крупным планом (угол наблюдения 45°) при $D \cong 700$ мкм, $w \cong 70$ мкм

(рис. 1). Следует отметить, что при производстве ПММС на базе ПММА, выполняющего одновременно роль позитивного рентгенорезиста, значение контрастности $K \approx 20$ при работе в интересуемом диапазоне рентгеновского спектра ($\lambda \approx 0.5-3$ Å) для LIGA-шаблона на основе 50 мкм латунной фольги оказывается достаточным [15], но в случае использования резиста SU-8 величина K должна быть как минимум в пять раз выше [23]. Решение данной проблемы состоит в использовании фольги из более тяжёлых металлов, таких как вольфрам или тантал, для которых необходимый уровень контрастности ($K \geq 100$) достигается уже при толщинах ≥ 15 мкм. Однако указанные металлы более тугоплавкие, что требует существенной модификации режима лазерной резки, а именно перехода от наносекундной к фемтосекундной длительности лазерных импульсов. В связи с тем что подобный переход является нетривиальной технической задачей, в данной работе предложена и опробована альтернативная технология получения самонесущих LIGA-шаблонов из вольфрамовой фольги. Технология основана на плазмохимическом травлении вольфрама через толстую фоторезистивную маску.

В качестве исходной заготовки LIGA-шаблона использовалась вольфрамовая фольга толщиной 60 мкм, которая после напыления адгезионных слоёв никеля и меди крепилась посредством диффузионной сварки к медному опорному кольцу. Выбор вольфрама продиктован двумя факторами: вольфрам является тяжёлым металлом, обеспечивающим высокую рентгеновскую контрастность шаблона (рис. 2), и вольфрам сравнительно хорошо травится в плазмах трихлорида бора (BCl₃) и гексафторида серы (SF₆) [24, 25]. Все описываемые далее операции плазмохимического травления производились на установке Plasmalab 80 Plus с источником индуктивно-связанной плазмы (ICP). Применялся циклический режим с чередованием операций травления (1 мин) и охлаждения (2 мин) таким образом, чтобы температура столика в начале цикла составляла ~5 °C.

Рис. 2. Зависимость контрастности металлического перфорированного LIGAшаблона от толщины его маскирующего слоя, рассчитанная для разных материалов: 1 — золота (₇₉Au); 2 — вольфрама (₇₄W); 3 — тантала (₇₃Ta); 4 — латуни (₂₉Cu(~60 %) + ₃₀Zn(~40 %)). Контрастность рассчитана в случае экспонирования на LIGA-станции с алюминиевым фильтром толщиной 30 мкм для резиста SU-8 на глубине 500 мкм

Рис. 3. СЭМ-фото (угол наблюдения 45°) фрагмента сформированной на поверхности вольфрамовой фольги резистивной маски из SU-8 толщиной 95 мкм, $D \cong 450$ мкм, $w \cong 60$ мкм

При изготовлении тестового LIGA-шаблона в качестве рабочей топологии MMC закладывалась топология TГц-фильтра высоких частот, представляющего собой массив гексагонально упакованных отверстий шестиугольной формы, разделённых перемычками шириной $w \cong 60$ мкм и имеющих диаметр описанной окружности $D \cong 450$ мкм (рис. 3). Изначально подобные фильтры предназначались для спектрального разделения каналов в многоканальной радиометрической диагностике широкополосного TГц-излучения на установке ГОЛ (гофрированная открытая ловушка) ИЯФ СО РАН, возникающего в процессе турбулентного нагрева плотной плазмы мощным релятивистским электронным пучком [26–28]. LIGA-шаблон изготавливался при реализации последовательности операций:

1. Формирование на рабочей поверхности фольги через подготовленный фотошаблон толстой резистивной маски из негативного резиста SU-8 с использованием контактной LED-фотолитографии [29].

Puc. 4. СЭМ-фото (угол наблюдения 45°) фрагмента поверхности вольфрамовой фольги, протравленной на глубину 21 мкм через резистивную маску из SU-8

2. Плазмохимическое травление вольфрама в плазме BCl₃ через полученную резистивную маску.

3. Плазменное удаление остатков резистивной маски.

4. Утонение центральной части вольфрамовой фольги путём её травления в плазме SF_6 с тыльной стороны до вскрытия отверстий микроструктуры LIGA-шаблона.

При реализации первой операции в данной работе была сформирована резистивная маска из SU-8 толщиной ~95 мкм (см. рис. 3), через которую травление вольфрама осуществлялось в циклическом режиме: давление p = 8 мТорр, скорости подачи газов BCl₃ 10 см³/мин, Ar 20 см³/мин, подводимые мощности RF = 100 BT, ICP = 600 BT, скорость травления вольфрама ~0,35 мкм за цикл. Во время этой операции происходило также травление резиста, причём более быстрое, чем травление вольфрама: соотношение скоростей их травления составляет ~4,5, т. е. резист травится со скоростью ~1,5 мкм за цикл. Травление велось практически до полного стравливания резистивной маски (~60 циклов), при этом вольфрам был протравлен на глубину ~21 мкм (рис. 4).

После удаления остатков резистивной маски (в режиме, рекомендуемом производителем SU-8) осуществлялось утонение (частичное удаление) центральной части вольфрамовой фольги путём её травления в плазме гексафторида серы (SF₆) с тыльной стороны до вскрытия отверстий микроструктуры. Применялся циклический режим, стадия травления которого характеризовалась следующими параметрами: давление p = 8 мТорр, скорость подачи SF₆ 13 см³/мин, подводимые мощности RF = 100 Вт, ICP = 600 Вт, при этом скорость травления ~1 мкм/цикл.

Итогом проведённых технологических операций стало получение образца самонесущего LIGA-шаблона с толщиной вольфрамового маскирующего слоя ~15 мкм и диаметром рабочего поля 15 мм (рис. 5).

Изготовление, тестирование и анализ характеристик микроструктурного фильтра. Для изготовления ТГц-фильтра высоких частот на основе медной ММС с применением вышеописанного LIGA-шаблона были использованы пластины из кремния кристаллографической ориентации (100) диаметром 76 мм. После напыления на поверхность пластины тонких адгезионных подслоёв титана и никеля наносился слой рентгенорезиста SU-8 толщиной 250 мкм, экспонирование которого далее производилось на LIGA-станции СЦСТИ с применением в качестве фильтра СИ титановой фольги толщиной 10 мкм и центрального поглотителя пучка шириной 16 мм [21]. После проведения стандартных процедур отжига и проявления резиста SU-8 [23] была получена резистивная маска (рис. 6), и через неё производилось гальваническое осаждение меди на поверхность кремниевой пластины (рис. 7). На последнем этапе пластина стравливалась, освобождая полученную MMC (делая её самонесущей). Было опробовано удаление центральной части (~Ø50 мм) кремниевой пластины путём её плазмохимического травления с тыльной стороны через дюралюминиевую маску. Данная операция производилась в циклическом режиме на стадии травления при следующих параметрах: давление p = 30 мТорр, скорости подачи газов SF_6 50 см³/мин, Ar 5 см³/мин, подводимые мощности RF = 70 BT, ICP = 500 BT, скорость травления ~2 мкм/цикл.

На рис. 8 показан внешний вид полученного образца медной MMC (после полного удаления кремниевой пластины), итоговая толщина которой составила 212 ± 3 мкм. Фильтрующие свойства данной структуры были протестированы в диапазоне частот 0,1–20 ТГц с применением двух дополняющих друг друга спектрометрических методик [30]:

Рис. 6. СЭМ-фото (угол наблюдения 12°) фрагмента резистивной маски из SU-8 толщиной 250 мкм, сформированной на поверхности кремниевой пластины с помощью LIGA-шаблона

Рис. 7. СЭМ-фото (угол наблюдения 30°) фрагмента медной ММС толщиной ~212 мкм, осаждённой через резистивную маску (маска и подложка удалены)

Рис. 8. Внешний вид изготовленной по описанной технологии круглой медной пластинки со сформированной в центре самонесущей ММС, предназначенной для использования в качестве ТГц-фильтра высоких частот. Наблюдаемые разводы возникают вследствие травления кремния в водном растворе щёлочи и исчезают после восстановления меди и напыления антикоррозийного алюминиевого слоя

а) техники ЛОВ-спектроскопии в интервале 0,1–1,1 ТГц (ЛОВ — лампа обратной волны) с использованием субмиллиметрового ЛОВ-спектрометра «Эпсилон» разработки ИОФ им. А. М. Прохорова РАН с детектированием ТГц-сигнала оптоакустическим приёмником (ячейкой Голея);

б) техники Фурье-спектроскопии (в интервале 1,1–20 ТГц) с применением вакуумного инфракрасного Фурье-спектрометра Bruker Vertex 80v с регистрацией сигнала неохлаждаемым пироэлектрическим DTGS-детектором. Измерения продемонстрировали хорошее совпадение экспериментального и расчётного спектров пропускания (рис. 9, *c*).

Расчёт проводился в частотной области (frequency domain) с использованием полноволнового электродинамического симулятора ANSYS Electromagnetics Suite R18.2 [31],

Рис. 9. Спектральные зависимости энергетического коэффициента пропускания нулевой дифракционной гармоники для ММС с шестиугольными отверстиями для различных толщин металла t, рассчитанные в пакете ANSYS Electromagnetics Suite R18.2 и с использованием аналитических формул из теории Чена. Для случая t = 212 мкм показан экспериментально измеренный спектр изготовленной структуры для $D \approx 450$ мкм, $w \approx 60$ мкм при нормальном

в котором моделирование ММС как регулярно-периодической структуры осуществлялось в режиме портов Флоке и периодических граничных условий, применённых к элементарной ячейке ММС. Проводимость металла σ , использованная в вычислениях, составляла $2\cdot10^7$ См/м. Контрольный расчёт спектра при внесении в σ частотной дисперсии по модели Друде [32] не выявил сколько-нибудь заметного отличия от случая $\sigma = \text{const.}$ Максимально доступная для расчёта полученной MMC в симуляторе ANSYS частота возбуждения составила 2,7 ТГц, что связано с программным ограничением $\Sigma < 100$ на полное число Σ мод Флоке (m, n) — плосковолновых гармоник, возбуждаемых периодической структурой [33], по базису которых симулятор осуществляет декомпозицию электромагнитного поля. При гексагональной упаковке ячеек ММС полнота данного базиса в дальней волновой зоне структуры на частоте $\nu = 2,7$ ТГц обеспечивается при $\Sigma = 86$, что соответствует вариации целочисленных латеральных индексов неэванесцентных ТЕ- и ТМ-поляризованных гармоник Флоке в интервалах $|m| \in [0,3], |n| \in [0,4]$ (для моды Флоке с индексами (m,n)первый индекс отвечает за пространственную вариацию поля вдоль оси X, второй – вдоль оси Y; здесь предполагается, что MMC рассматривается в системе координат XY, показанной на рис. 9, c). При $\nu > 2.7$ ТГц полнота базиса требует выполнения условия $\Sigma > 100$, что делает расчёт на частотах выше 2,7 ТГц некорректным.

Наряду с моделированием структуры толщиной 212 мкм расчёты спектров пропускания были проведены также и для других значений толщин t. Представленные на рис. 9 графики демонстрируют усиление эффекта волноводной отсечки с ростом толщины металла, который проявляется в резком возрастании крутизны спектральной характеристики вблизи частоты отсечки $\nu_c = 0.42$ ТГц с экспоненциальным подавлением низких частот. Для наглядности в левой части рис. 9, с—е выделены фрагменты в логарифмическом масштабе по оси ординат, отнесённые к интервалу 0,1–0,5 ТГц. Важной особенностью ММС данного типа является то, что в области дифракционной одномодовости $\nu_c < \nu < \nu_{diff}$, где $\nu_{diff} = 0.77$ ТГц — частота возбуждения первых $(|m| + |n| \neq 0)$ неэванесцентных дифракционных гармоник (она же первая брэгговская частота [33]), структура сохраняет высокие значения коэффициента пропускания с максимумом, близким к единице [14]. На частотах $\nu > \nu_{diff}$ по причине оттока энергии в высшие дифракционные моды, распространяющиеся под углом к поверхности MMC, пропускание для основной моды (0,0), регистрируемой в эксперименте, падает до уровня некоторого квазиплато, средняя величина которого практически не зависит от величины t, но убывает с ростом ширины перемычек w [14]. Для рассмотренной ММС с $w \approx 60$ мкм уровень квазиплато составляет $\sim 0.5-0.55$ на частотах до 1,3 ТГц ($3\nu_c$ или 1, $7\nu_{diff}$), спадая к 3 ТГц ($7\nu_c$ или $4\nu_{diff}$) приблизительно до ~ 0.4 . На примере случая t = 212 мкм (см. рис. 9,c) эксперимент показывает, что с дальнейшим ростом частоты пропускание ММС монотонно повышается, возвращаясь на уровень ~ 0.5 в окрестности 13 ТГц ($31\nu_c$ или $17\nu_{diff}$). При ещё бо́льших частотах, лежащих в ИК-области, коэффициент пропускания асимптотически стремится к геометрической прозрачности $(3/4)D^2/((\sqrt{3}/2)D+w)^2$, значение которой для данной структуры составляет 0.75.

При анализе спектральных особенностей ММС в области $\nu_c < \nu < \nu_{diff}$ можно обратить внимание на модуляцию пропускания при толщинах t > 200 мкм (см. рис. 9, c-e). Спектральная модуляция — эффект Фабри — Перо, который обусловлен возбуждением стоячих волн внутри волноводных ячеек вследствие частичного отражения проходящей волны от границ ММС [14, 33]. Высокодобротный резонанс и сопутствующий ему самый глубокий провал в пропускании располагаются чуть выше частоты отсечки, т. е. в области, где структура имеет высокий коэффициент отражения. Поскольку увеличение толщины вызывает углубление провала, использование излишне больших значений t при реализации фильтров высоких частот не видится целесообразным. Для ММС рассмотренной геометрии оптимум приходится на толщины около 600 мкм (~0,84 λ_c , где $\lambda_c = 714$ мкм — длина волны отсечки). С учётом того что ширина перемычек, обеспечивающая относительно высокую прозрачность ММС в области $\nu > \nu_{diff}$ и приемлемую механическую прочность, выпадает на интервал 30–60 мкм, оптимальный диапазон аспектных отношений a = t/w, рекомендуемый для практической реализации фильтров высоких частот на базе однослойных ММС, составляет 10–20.

Следует отметить, что для быстрой оценки спектрального отклика ММС с узкими перемычками ($w/D \le 0.2$) может быть рекомендована теория Чена, аналитические формулы для которой представлены в [34]. Указанные формулы, не приведённые здесь ввиду громоздкости, описывают пропускание основной моды (0,0) для случая гексагонально упакованных отверстий круглой формы, однако могут применяться и для шестиугольных отверстий при подстановке в формулы Чена в качестве диаметра величины $2\sqrt{3}/(2+\sqrt{3})D$, дающей такую же частоту отсечки ν_c [14]. При равных значениях латерального периода геометрическая прозрачность ММС с шестиугольными и круглыми отверстиями в таком случае совпадает с точностью ~ 2 %. На рис. 9, a - e кривые, рассчитанные по формулам Чена, показаны штрихпунктирными линиями. Заметим, что при $\nu > \nu_{diff}$ кривые Чена не содержат особенностей, в то время как полноволновое моделирование и эксперимент показывают наличие в спектре особых частот, в окрестности которых имеют место быстрые изменения (скачки или провалы) амплитуды и фазы. Эти частоты, так называемые брэгговские резонансы, — точки, выше которых соответствующие моды Флоке переходят из эванесцентных поверхностных волн в свободно распространяющиеся плоские дифракционные гармоники [33]. При нормальном падении эти частоты всегда вырождены, т. е. каждой брэгговской частоте соответствуют не менее двух мод с различающимися парами индексов (m, n). Для рассмотренной ММС в расчётном интервале 0,1– 2,7 ТГц можно выделить шесть брэгговских частот, положение которых на рис. 9 отмечено вертикальными пунктирными линиями: $\nu_{\rm I} \equiv \nu_{diff} = 0.77$ ТГц (моды (±1,0), (0,±1), $(+1,+1), (-1,-1)); \nu_{II} = 1,33$ ТГц (моды (+1,-1), (-1,+1), (+1,+2), (-1,-2), (+2,+1), (-1,-2), (+2,+1), (-1,-2), (+2,+1), (-1,-2), (-1,-2), (+2,+1), (-1,-2),(-2, -1); $\nu_{III} = 1.54$ T Γ_{II} (моды $(\pm 2, 0)$, $(0, \pm 2)$, (+2, +2), (-2, -2)); $\nu_{IV} = 2.04$ T Γ_{II} (моды (+1, -2), (+1, +3), (-1, +2), (-1, -3), (+2, -1), (-2, +1), (+2, +3), (-2, -3), (+3, +1), $(+3,+2), (-3,-1), (-3,-2); \nu_{\rm V} = 2,31 \text{ TFu} \pmod{(0,\pm 3)}, (0,\pm 3), (+3,+3), (-3,-3);$ $\nu_{\rm VI} = 2,67$ ТГц (моды (+2, -2), (-2, +2), (+2, +4), (-2, -4), (+4, +2), (-4, -2)). При наклонном падении вырождение брэгговских резонансов частично снимается, при этом их частоты зависят не только от угла θ между волновым вектором **k** падающей волны и нормалью к поверхности MMC, но и от азимутального угла φ , описывающего проекцию k на латеральную плоскость структуры [33].

Заключение. В представленной работе предложена и опробована рентгенолитографическая методика получения толстых самонесущих цельнометаллических микроструктур, которая, с одной стороны, базируется на классическом способе изготовления таких структур посредством LIGA-технологии, когда структура гальванически выращивается на несущей подложке через толстую резистивную маску, а с другой стороны, содержит ряд усовершенствований, ранее не применявшихся в данной тематике. В частности предложена новая технология изготовления высококонтрастного LIGA-шаблона на основе вольфрамовой фольги, при создании топологического рисунка которого используются стандартные технологические операции фотолитографии и плазмохимического травления, что позволяет как минимум в несколько раз уменьшить неровность края микрорисунка по сравнению с технологией лазерной резки. Кроме того, при получении итоговой самонесущей MMC подстилающая её кремниевая подложка (полностью или только центральная часть) удаляется травлением, что даёт возможность не прибегать к традиционному способу «отщёлкивания» структуры от подложки, который для MMC с узкими перемычками, разделяющими сквозные отверстия, приводит к механическим повреждениям структуры, и фиксировать MMC на опорном кольце, тем самым исключая дополнительные технологические процедуры изготовления опорного кольца и приклейки MMC к нему.

Предложенный технологический подход успешно опробован при создании медной MMC толщиной 212 мкм с топологией шестиугольных отверстий, выполняющей роль ТГц-фильтра высоких частот с частотой отсечки 0,42 ТГц. Спектральное тестирование изготовленной структуры показало хорошее согласование расчётной и экспериментальной характеристик и высокое качество получаемых MMC. Несмотря на относительно невысокую величину аспектного отношения для изготовленной структуры ($a \approx 3,5$), предложенная технология производства адекватна для получения более высокоаспектных MMC с толщиной металлического слоя до 1000 мкм, в частности, для реализации оптимизированных фильтров высоких частот, удовлетворяющих вышеупомянутому критерию a = 10-20. По нашим оценкам, исходя из технологических ограничений 10 мкм на ширину металлических перемычек w, разделяющих отверстия, предложенная методика может применяться для изготовления фильтров высоких частот с частотой отсечки ν_c до 2,5 ТГц. Указанная величина ν_c получается при 6-кратном уменьшении латеральных размеров рассмотренной MMC, что при аспектном отношении a = 10 соответствует толщине металла 100 мкм.

Дальнейшие работы будут ориентированы на увеличение размеров рабочего поля получаемых структур, их толщины, аспектного отношения, а также на адаптацию топологического рисунка ММС под другие ТГц-приложения.

Благодарности. Работа выполнена с привлечением инфраструктуры Центра коллективного пользования «Сибирский центр синхротронного и терагерцового излучения» (СЦСТИ) на базе накопительного комплекса ВЭПП-3/ВЭПП-4М ИЯФ СО РАН.

Финансирование работы. Работа выполнена при поддержке Министерства высшего образования и науки РФ (проекты RFMEFI62117X0012 и № 0306-2016-0020) и Российского фонда фундаментальных исследований (проект № 18-29-20066).

СПИСОК ЛИТЕРАТУРЫ

- Yun-Shik L. Principles of THz Science and Technology. N. Y.: Springer Science and Business Media, 2009. 340 p.
- Peiponen K.-E., Zeitler J. A., Kuwata-Gonokami M. Terahertz Spectroscopy and Imaging. Berlin — Heidelberg: Springer-Verlag, 2013. Vol. 171. 644 p.
- 3. Song H.-J., Nagatsuma T. Handbook of Terahertz Technologies: Devices and Applications. Singapore: Pan Stanford Publishing Pte. Ltd, 2015. 612 p.
- Dhillon S. S., Vitiello M. S., Linfield E. H. et al. The 2017 terahertz science and technology roadmap // Journ. Phys. D: Appl. Phys. 2017. 50, N 4. 043001.
- Kuznetsov S. A., Astafyev M. A., Gelfand A. V., Arzhannikov A. V. Microstructured frequency selective quasi-optical components for submillimeter-wave applications // Proc. of the 44th Eur. Microwave Conf. (EuMC 2014). Rome, Italy, 6–9 Oct., 2014. P. 881–884.
- Kuznetsov S. A., Arzhannikov A. V., Kubarev V. V. et al. Development and characterization of quasi-optical mesh filters and metastructures for subterahertz and terahertz applications // Key Eng. Mat. 2010. 437. P. 276–280.
- Aznabet M., Navarro-Cia M., Kuznetsov S. A. et al. Polypropylene-substrate-based SRRand CSRR-metasurfaces for submillimeter waves // Opt. Express. 2008. 16, N 22. P. 18312–18319.
- Кузнецов С. А., Гельфанд А. В. Исследование спектральных характеристик микроструктурных квазиоптических полосовых фильтров субтерагерцового диапазона // Изв. вузов. Физика. 2015. 58, № 11. С. 113–120.
- Kuznetsov S. A., Astafev M. A., Beruete M., Navarro-Cia M. Planar holographic metasurfaces for terahertz focusing // Sci. Reports. 2015. 5. 7738.

- Kuznetsov S. A., Paulish A. G., Navarro-Cia M., Arzhannikov A. V. Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers // Sci. Reports. 2016. 6. 21079.
- Kuznetsov S. A., Kubarev V. V., Kalinin P. V. et al. Development of metal mesh based quasi-optical selective components and their application in high-power experiments at Novosibirsk terahertz FEL // Proc. of the 29th Intern. Free Electron Laser Conf. (FEL 2007). Novosibirsk, Russia, 26–31 Aug., 2007. P. 89–92.
- 12. Кузнецов С. А., Гольденберг Б. Г., Калинин П. В. и др. Разработка медных сеточных структур для частотной и пространственной селекции ТГц-излучения новосибирского лазера на свободных электронах // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2009. № 9. С. 38–49.
- 13. Кузнецов С. А., Генцелев А. Н., Гольденберг Б. Г. и др. Создание методами LIGAтехнологии микроструктурных фильтров субтерагерцового диапазона и исследование их селективных свойств // Вестник НГУ. Сер. Физика. 2012. 7, № 4. С. 25–42.
- 14. Кузнецов С. А., Генцелев А. Н., Баев С. Г. Реализация фильтров высоких частот субтерагерцового диапазона с использованием высокоаспектных полимерных структур // Автометрия. 2017. 53, № 1. С. 107–116.
- 15. Генцелев А. Н., Кузнецов С. А., Баев С. Г. и др. Создание квазиоптических селективных элементов терагерцового диапазона в виде псевдометаллических структур посредством глубокой рентгеновской литографии // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2017. № 7. С. 32–42.
- Ruprecht R., Bacher W. Untersuchungen an mikrostrukturierten Bandpassfiltern fuer das Ferne Infrarot und ihre Herstellung durch Roentgentiefenlithographie und Mikrogalvanoformung. KfK Report 4825. Kernforschungszentrum Karlsruhe, 1991. 89 p.
- Nazmov V., Reznikova E., Mathis Y. L. et al. Bandpass filters made by LIGA for the THz region: manufacturing and testing // Nucl. Instr. Meth. Phys. Res. A. 2009. 603, N 1–2. P. 150–152.
- Pacheco-Peca V., Engheta N., Kuznetsov S. et al. Experimental realization of an epsilonnear-zero graded-index metalens at terahertz frequencies // Phys. Rev. Appl. 2017. 8, N 3. 034036.
- Saile V., Wallrabe U., Tabata O., Korvink J. G. LIGA and its Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. Vol. 7. 490 p.
- Gatzen H. H., Saile V., Leuthold J. Micro and Nano Fabrication: Tools and Processes. Berlin — Heidelberg: Springer-Verlag, 2015. 519 p.
- Goldenberg B. G., Lemzyakov A. G., Nazmov V. P., Pindyurin V. F. Multifunctional X-ray Lithography Station at VEPP-3 // Phys. Procedia. 2016. 84. P. 205–212.
- Пат. 2421833 РФ. Металлическая сеточная структура и способ её изготовления /А. Н. Генцелев, А. Г. Зелинский, В. И. Кондратьев. Опубл. 2011, Бюл. № 17. С. 942.
- Reznikova E. F., Morh J., Hein H. Deep photo-lithography characterization of SU-8 resist layers // Microsyst. Technol. 2005. 11, N 4/5. P. 282–291.
- Fischl D. S., Hes D. W. Plasma-Enhanced etching of tungsten and tungsten silicide in chlorinecontaining discharges // Journ. Electrochem. Soc. 1987. 134, N 9. P. 2265–2268.
- 25. Verdonck P., Swart J., Brasseur G., Geyter P. Analysis of the etching mechanisms of tungsten in fluorine containing plasma // Journ. Electrochem. Soc. 1995. 142, N 6. P. 1971–1976.
- 26. Arzhannikov A. V., Burdakov A. V., Burmasov V. S. et al. Observation of spectral composition and polarization of sub-terahertz emission from dense plasma during relativistic electron beam-plasma interaction // Phys. Plasmas. 2014. 21, N 8. 082106.

- 27. Arzhannikov A. V., Burdakov A. V., Burmasov V. S. et al. Dynamics and spectral composition of subterahertz emission from plasma column due to two-stream instability of strong relativistic electron beam // IEEE Trans. THz Sci. Tech. 2016. 6, N 2. P. 245–252.
- Arzhannikov A. V., Burdakov A. V., Burmasov V. S. et al. Microwave generation during 100 keV electron beam relaxation in GOL-3 // Fus. Sci. Tech. 2013. 63, N 1T. P. 286–288.
- 29. Генцелев А. Н., Дульцев Ф. Н., Кондратьев В. И., Лемзяков А. Г. Формирование толстых высокоаспектных резистивных масок методом контактной фотолитографии // Автометрия. 2018. **54**, № 2. С. 20–29.
- Gruener G. Millimeter and Submillimeter Wave Spectroscopy of Solids. Berlin Heidelberg: Springer-Verlag, 1998. Vol. 74. 287 p.
- 31. ANSYS Corp., Inc. 2019. URL: https://www.ansys.com (дата обращения: 22.10.2018).
- 32. Ordal M. A., Long L. L., Bell R. J. et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared // Appl. Opt. 1983. 22, N 7. P. 1099–1119.
- 33. Кузнецов С. А., Аржанников А. В., Тумм М. К. А. Особенности дифракции электромагнитных волн на регулярно-периодических индуктивных металлических структурах // Вестн. НГУ. Сер. Физика. 2013. 8, № 4. С. 11–24.
- Winnewisser C., Lewen F., Helm H. Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy // App. Phys. A. 1998. 66, N 6. P. 593–598.

Поступила в редакцию 22.10.2018 После доработки 21.12.2018 Принята к публикации 24.12.2018