РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТО МЕТРИЯ

Nº 1

1993

УДК 621.317.4

И. В. Голышев, С. В. Моторин, Б. М. Рогачевский

(Новосибирск)

АВТОМАТИЧЕСКИЙ ВВОД В РЕЖИМ СКВИД-ПРИБОРОВ

Для ВЧ- и ПТ-сквидов проанализированы требования к точности установки токов накачки и смещения, резонансной частоты и амплитуды модуляции, обеспечивающих получение максимального отношения сигнал/шум. Обсуждены особенности и выбор алгоритмов реализации автоматической установки (ввод в режим) указанных параметров сквидов.

Сквид-приборы — новый класс средств измерений, основанный на использовании эффектов сверхпроводимости. Основным узлом этих приборов являются сквиды (сверхпроводниковые квантовые интерференционные датчики) — преобразователи магнитного потока в напряжение. Применяются высокочастотные (ВЧ) сквиды и сквиды постоянного тока (ПТ-сквиды). Работоспособность сквидов существенно зависит от правильного выбора внешних параметров, задающих их режим работы, и обеспечивается, как правило, в относительно узком диапазоне изменения этих параметров. Важнейший показатель работоспособности сквидов — возможно большее для данного сквида отношение сигнал/шум (С/Ш) на его выходе. Оптимизация этого показателя является главным условием в большинстве применений сквид-приборов и рассматривается в данной статье как основная цель ввода в режим сквидов [1].

Вначале выясним, насколько изменяются шумовые свойства сквидов при изменении их внешних параметров. Данный вопрос в известной нам отечественной и зарубежной литературе не анализировался. Схемы ВЧ- и ПТ-сквидов, а также сверхпроводниковых (СП) веберметров на их основе изображены соответственно на рис. 1 и 2. Принятые обозначения ясны из рисунков. В ВЧ-сквидах чувствительным элементом является сверхпроводниковый квантовый интерферометр (СКИ), состоящий из одного перехода Джозефсона (ПД), включенного в сверхпроводящее кольцо. Для съема сигнала со СКИ его индуктивно связывают с радиочастотным $L_{\kappa}C_{\kappa}$ -контуром, в который от высокочастотного генератора (ГВЧ) подается ток накачки I_{μ} . В результате

нелинейного взаимодействия в системе контур — СКИ происходит амплитудная модуляция ВЧ-напряжения, возникающего на контуре, измеряемым магнитным потоком Φ_x .

Частота накачки чаще всего 10—30 МГц, при этом глубина модуляции напряжения на контуре лежит в пределах 10—30 мкВ.

После усиления УВЧ-сигнал детектируется амплитудным детектором (АД). Зависимости сигнала на выходе АД от тока накачки $I_{\rm H}$ при различных значениях $\varphi_x = 2\pi \frac{\Phi_x}{\Phi_0}$ (вольт-амперные характеристики ВЧ-сквида — ВАХ) приведены на рис. 3 (сплошные линии). Там же штриховыми линиями показаны зависимости среднеквадратичного значения напряжения шума $(U_{\rm m}^2)^{1/2}$ на выходе АД от $I_{\rm H}$ при различных значениях $\varphi_x = 0$; $0, 6\pi; \pi$ (Φ_0 — квант магнитного потока). ВАХ ВЧ-сквида снята после настройки L_xC_x -контура (ω_p — его собственная частота) в резонанс с частотой $\omega_{\rm H}$ высокочастотного генератора. Следует обратить внимание на сложный характер зависимости $U_{\rm AQ} \times (U_{\rm u}^2)^{1/2}$ от φ_x и $I_{\rm H}$. Для каждого φ_x существует оптимальное значение тока накачки $I_{\rm H0}$, при котором шум минимален. Вольт-потоковая характеристика (ВПХ) ВЧ-сквида, представляющая собой зависимость $V(\varphi_x)$ при заданном $I_{\rm H}$ (на рис. 3 $I_{\rm H} = I_{\rm H1}$), является периодической (с периодом Φ_0) функцией, близкой к треугольной форме. Размах ВПХ и шум сильно зависят от рас-

Puc. 3

стройки $L_{\kappa}C_{\kappa}$ -контура: $\varepsilon_{\kappa} = \frac{\omega_{\kappa} - \omega_{p}}{\Delta \omega_{\kappa}}$, $\Delta \omega_{\kappa}$ — полоса пропускания контура; наибольший размах ВПХ и наилучшие шумовые характеристики достигаются при $\omega_{\kappa} = \omega_{p}$.

ВАХ можно записать в виде

$$V(I_{\rm H}, \varepsilon_{\rm g}, \varphi_{\rm x}) = \begin{cases} V_{\rm l}(I_{\rm H}, \varepsilon_{\rm g}), & I_{\rm H} < I_{\rm hc}, \\ V_{\rm l}(I_{\rm H}, \varepsilon_{\rm g})f_{\rm l}(\varphi_{\rm x}), & I_{\rm H} > I_{\rm hc}, \end{cases}$$
(1)

где $V_1(I_{\rm H}, \varepsilon_{\rm K})$ — некоторая нелинейная функция, не зависящая от φ_x ; $f_1(\varphi_x)$ — периодическая функция единичной амплитуды с периодом Φ_0 .

Значение I_{nc} зависит от параметров СКИ и различно у разных образцов интерферометров. Область ВАХ при $I_n < I_{nc}$ удобно использовать для настройки радиочастотного контура, так как здесь отсутствует зависимость от φ_x и выше избирательность контура.

СКИ ПТ-сквида содержит два перехода Джозефсона, сигнал можно снимать непосредственно со СКИ, поэтому ПТ-сквид не нуждается в ВЧ-накачке (вместо этого у него используется постоянный ток смещения I_p), что упрощает его схему.

Типичный вид ВАХ ПТ-сквида $V(I_p, \varphi_x)$ приведен на рис. 4. Там же показана форма ВПХ — $V(\varphi_x)$ при $I_p = \text{const.}$

ВАХ ПТ-сквида можно записать в виде

$$V(I_{\rm p},\varphi_{\rm x}) = \begin{cases} 0, & I_{\rm p} < I_{\rm pc}, \\ V_2(I_{\rm p})f_2(\varphi_{\rm x}), & I_{\rm p} > I_{\rm pc}, \end{cases}$$
(2)

где I_{pc} — критический ток СКИ; $V_2(I_p)$ — некоторая нелинейная функция, не зависящая от φ_x ; $f_2(\varphi_x)$ — периодическая функция единичной амплитуды.

При определенных значениях I_p форма ВПХ близка к синусоидальной. Обычно в таком случае имеет место наибольшее отношение С/Ш. Однако даже малые отклонения тока I_p (порядка 2—3 %) могут вызвать искажения ВПХ, вид которых показан на рис. 4 штриховыми линиями. Существенно при этом то, что крутизна ВПХ $\partial V(\varphi_x)/\partial \varphi_x$ в области малых φ_x уменьшается, а размах ВПХ практически остается прежним, и тогда ухудшается отношение С/Ш. Для ВЧ-сквидов максимальный размах ВПХ соответствует максимальным отношению С/Ш и $\partial V(\varphi_x)/\partial \varphi_x$, поскольку в широком диапазоне I_n форма ВПХ близка к треугольной. С целью расширения динамического диапазона и уменьшения дрейфа нуля и шумов вида 1/f [1] в схемах на основе сквидов используется модуляция магнитного потока (см. рис. 1 и 2). Частоты модуляции, создаваемые низкочастотным генератором, в ВЧ- и ПТ-сквидах обычно составляют (20—50) и (100—500) кГц соответственно. Для улучшения отношения сигнал/шум детектирование модулированного сигнала осуществляется

Puc. 4

синхронным детектором (СД). Сигнал с выхода СД интегрируется и при замкнутой цепи обратной связи (ОС) создает магнитный поток обратной связи, воздействующий на СКИ. Сквид-приборы, содержащие указанные элементы, называют иногда СП-веберметрами [2].

Таким образом, появляется еще один параметр настройки амплитуда магнитного потока мо-

дуляции
$$\varphi_{_{\mathrm{M}}} = 2\pi \, \frac{\Phi_{_{\mathrm{M}}}}{\Phi_{_{\mathrm{O}}}}$$

Вследствие сложности процессов в сквидах и недостаточности их теоретического описания не удается получить удобные для практического использования выражения (1) и (2) и аналитические зависимости, связывающие отношение С/Ш на выходе сквидов со значениями перечисленных выше настраиваемых параметров: для ВЧ-сквидов — $I_{\rm H}, \omega_{\rm p}, \varphi_{\rm M}$; для ПТ-сквидов — $I_{\rm p}, \varphi_{\rm M}$. Поэтому связь уровня шума на выходе сквидов со значениями параметров их настройки устанавливалась нами экспериментально следующим образом.

Путем тщательной ручной настройки методом последовательных приближений определялись значения $I_{\mu 0}$, $\omega_{\rho 0}$ и $\varphi_{m 0}$ для ВЧ-сквидов, соответствующие минимуму уровня шумового магнитного потока $(\Phi^2_{\mu 0})^{1/2}$ на выходе сквида при работе в схеме с замкнутой обратной связью. После этого найденным оптимальным значениям параметров поочередно давались приращения разного знака и фиксировались получающиеся в результате значения $(\Phi^2_{\mu 0})^{1/2}$. Таким образом были найдены зависимости степени возрастания шума η_{λ} от вариации параметров λ относительно оптимальных значений λ_0 :

$$\eta_{\lambda} = (\overline{\Phi_{\mathrm{m}}^2(\lambda)})^{1/2} / (\overline{\Phi_{\mathrm{m}0}^2(\lambda_0)})^{1/2}.$$

Аналогичные измерения были проведены для различных ПТ-сквидов применительно к I_p и φ_{M} (I_{p0} и φ_{M0} соответствуют минимуму шума ПТ-сквидов).

Исследовались ВЧ-сквиды в диапазоне постоянной СКИ $l = \frac{2\pi L I_c}{\Phi_0} = 3 \div 10$ и значений фактора $K^2 Q \approx 3-5 \left(K^2 = \frac{M}{L L_{\chi}}\right)$, где I_c — критический ток, L — индуктивность СКИ, M — взаимная индуктивность между СКИ и катушкой L_{κ} -контура, Q — добротность контура. Для ПТ-сквидов границы диапазона по значениям рабочего тока смещения $I_{pmin} \div I_{pmax}$ 5 и 100 мкА. Значение постоянной СКИ ПТ-сквида $\beta_L = \frac{2L I_c}{\Phi_0} \approx 1$ [1].

В результате анализа экспериментальных данных для ВЧ-сквида получены следующие зависимости для расстроек по частоте резонанса и амплитуде модуляции:

$$\varepsilon_{\rm p} \approx 0.44\sqrt{\eta - 1}/Q, \text{ rge } \varepsilon_{\rm p} = \frac{\omega_{\rm H} - \omega_{\rm p}}{\omega_{\rm p}};$$

$$\varepsilon_{\rm MBY} \approx 0.25\sqrt{\eta - 1}, \text{ rge} \cdot \varepsilon_{\rm MBY} = \frac{\varphi_{\rm M0} - \varphi_{\rm M}}{\varphi_{\rm M0}}.$$
(3)

Если допустить возрастание шума, обусловленное погрешностью установки режимов по частоте и амплитуде модуляции не более чем на 5 %, то требуемая точность установки $\omega_{\rm p}$ и $\varphi_{\rm M}$ будет определяться следующими значениями: $|\varepsilon_{\rm p}| < 9.5 \cdot 10^{-4}, |\varepsilon_{\rm MBY}| < 5.6 \cdot 10^{-2}$. При данной оценке использовано типичное значение добротности $L_{\rm k}C_{\rm k}$ -контура Q = 100. Для допустимой расстройки по току накачки $\varepsilon_{\rm H} = \frac{I_{\rm H0} - I_{\rm H}}{I_{\rm H0}}$ получено эмпирическое соотношение

$$\epsilon_{\mu} = C \left(\frac{\Delta I_{\mu}}{I_{\mu}} \right)_{\max},$$
 (4)

где $\left(\frac{\Delta I_{\rm H}}{I_{\rm H}}\right)_{\rm max} = \frac{4}{\pi} (K^2 Q - 1) / \left[l + \frac{4}{\pi} K^2 Q \right]$ — относительная длина «плато» BAX.

Значение коэффициента $C \approx 0.4$ соответствует ухудшению отношения сигнал/шум не более чем на 10 %. При $C \leq 0.1$ ухудшение отношения сигнал/шум не превышает 5 %. Можно видеть, что требования к точности установки тока накачки существенно зависят от K^2Q и *l*. В типичном случае

$\varepsilon_l = 0, 14\sqrt{\eta - 1},$

$\varepsilon_{\rm mint} \approx 0.13 \sqrt{\eta - 1},$

(5)

где $\varepsilon_I = \frac{I_{p0} - I_p}{I_{p0}}$ — расстройка по рабочему току смещения; $\varepsilon_{M\Pi T} = \frac{\varphi_{M0} - \varphi_M}{\varphi_{M0}}$ —

расстройка по амплитуде модуляции.

Если допустить возрастание шума на 5 %, то требуемые точности установки рабочего тока и амплитуды модуляции составят:

$$|\varepsilon_I| < 3 \cdot 10^{-2}, \qquad |\varepsilon_{\text{MIT}}| < 3 \cdot 10^{-2}.$$

После полученного ответа на вопрос о необходимой точности установки внешних параметров сквидов перейдем к обсуждению особенностей, выбору алгоритмов и аппаратных средств реализации ввода в режим сквидов.

Настройка ВЧ-сквида по ω_p . Выше уже отмечалось, что настройку $L_k C_k$ контура ВЧ-сквида целесообразно проводить при $I_H < I_{He}$. В таком случае влияние φ_x и невысокой избирательности контура на точность установки требусмого значения ω_p уменьшается. Однако при этом амплитуда напряжения на контуре V оказывается небольшой — 15—40 мкВ, а среднеквадратичное напряжение шумов входной цепи и УВЧ может достигать единиц микровольт. Поэтому следует использовать усредняющие (фильтрация, накопление) устройства, требования к которым определяются исходя из необходимой точности настройки.

Если перед началом настройки $L_{\rm x}C_{\rm x}$ -контура исходное значение $Q\epsilon_{\rm p}$ неизвестно или велико (> 2—3), то целесообразен следующий алгоритм настройки в резонанс $L_{\rm x}C_{\rm x}$ -контура. Вначале крупным шагом осуществляется развертка по $\omega_{\rm p}$, например, изменением емкости варикапа $C_{\rm s}$ (см. рис. 1) под действием напряжения $U_{\rm p}$, формируемого с помощью ЦАП. В полученном массиве данных $\{U_{\rm A,I}, \omega_{\rm p}\}$ определяется максимум $U_{\rm A,I}$, в окрестностях которого в дальнейшем производится уточнение с шагом, соответствующим требуемой точности настройки. Время настройки контура в этом случае составляет 10—15 с. Если $Q\epsilon_{\rm p} \leq 2$, то более эффективны алгоритмы стохастического поиска экстремума, в частности алгоритм Кифера — Вольфовица [3].

Являясь алгоритмом с переменным шагом, названный алгоритм обеспечивает высокую точность локализации резонансной частоты, ограниченную только разрядностью ЦАП, управляющего варикапом. Требуемая точность настройки контура достигается за 5—10 шагов работы алгоритма. Время настройки лежит в пределах 1—3 с. К недостаткам алгоритма относится высокая чувствительность к значению начальной расстройки контура. Если $Q\varepsilon_p \approx 5$, то скорость сходимости алгоритма резонансной кривой.

Сочетание предварительной развертки с крупным шагом с последующим использованием алгоритма Кифера — Вольфовица обеспечивает время настройм *L*_к*C*_к-контура 3—5 с.

Приведенные выше данные о времени настройки контура получены нами при практическом применении указанных алгоритмов.

Настройка ВЧ-сквида по І_н. Из рис. 1 следует, что в области минимума при любых φ_x шум от тока накачки изменяется слабо. Если найти I_{н0}, соответствующий минимуму шума при каком-то φ_x , то при другом φ_x шум может оказаться значительным; исключение составляет окрестность точки A, в которой независимо от φ_x шум изменяется мало и незначительно (в пределах 5-10%) отличается от самого минимального значения.

Поэтому оправдано ток накачки выбирать вблизи точки $A(I_{\rm H1})$. Реализовать это можно следующим образом. В катушку обратной связи — модуляции (ОС — М) подается низкочастотный магнитный поток амплитудой в несколько десятков Φ_0 . В этом случае на ВАХ происходит многократное изменение положения точки от $\varphi_z = 0$ до $\varphi_z = 2\pi$. Если одновременно осуществить развертку по $I_{\rm H}$ и измерить усредненное значение $[U_{\rm m}^2(I_{\rm H},\varphi_x)]^{\sqrt{2}}$, то получится кривая, которая на рис. 1 представлена штрихпунктирной линией и обозначена $\langle \varphi_x \rangle$. Видно, что минимум данной кривой как раз лежит в окрестности точки A. Заметим, что выражение (3) для $\varepsilon_{\rm p}$ соответствует именно этой кривой.

Как оказалось, максимум размаха ВПХ получается, если ток накачки также близок к точке A. Таким образом, для нахождения максимального отношения С/Ш на практике достаточно при развертке по $I_{\rm H}$ следить за появлением либо минимума (φ_x), либо максимума размаха ВПХ (при треугольной форме ВПХ это соответствует максимуму полезного сигнала). Развертку по $I_{\rm H}$ можно осуществить с помощью аттенюатора (Ат) (см. рис. 1), управляемого напряжением $U_{\rm H}$, которое формируется ЦАП.

Время, необходимое на установку тока накачки, при использовании любого из указанных алгоритмов не превышает 10—15 с. Напомним, что установка ω_{p0} и I_{H0} осуществляется при разомкнутой обратной связи СП-веберметра. Эксперименты и практика применения показали, что после замыкания обратной связи уточнения ω_{p0} и I_{H0} не требуется.

Настройка ВЧ-сквида по φ_{μ} . Для ВЧ-сквидов оптимальное значение амплитуды модуляции $\varphi_{m} = \pi/2$. Установка этого значения нами осуществлялась следующим образом. Обратная связь в схеме на рис. 1 разомкнута, напряжение Uca измеряется на выходе СД. Для исключения влияния низкочастотного измеряемого магнитного потока φ_{z} на $U_{\rm CL}$ в цепь обратной связи подается контрольный сигнал U_{KC} низкой частоты (например, 50 Гц), но большой амплитуды так, чтобы $\varphi_{\rm KC} >> \varphi_x$. При этом вследствие периодического характера ВПХ на выходе СД контрольный сигнал имеет частоту до нескольких килогерц (в зависимости от соотношения Φ_0 и Φ_{KC}), и с помощью полосовой фильтрации влияние φ_x существенно ослабляется. Если следить за изменениями амплитуды контрольного сигнала при изменении $\varphi_{...}$ с помощью аттенюатора уровня модуляции (ATM), то при $\varphi_{12} = \pi/2$ она имеет максимум. Для уменьшения времени настройки развертку по $\varphi_{:::}$ вначале следует проводить крупным шагом. Из регистрируемого массива данных находится $\varphi_{\rm M1}$, при котором имеет место наибольшее значение амплитуды контрольного сигнала, после чего осуществляется переход на более мелкий шаг, определяемый исходя из требуемой точности настройки (выражение (3)), и в окрестности φ_{m1} с этим шагом ищется искомое φ_{m0} . После замыкания ОС уточнения φ_{M0} не требуется.

Настройка ПТ-сквида по I_p и φ_{\perp} . Особенность настройки ПТ-сквида по сравнению с ВЧ-сквидом состоит в следующем. В ВЧ-сквидах максимум размаха ВПХ совпадает с максимальной крутизной ВПХ в окрестности $\varphi_x = 0$ (см. рис. 3). Поэтому выбор $I_{\rm H0}$ и $\varphi_{\perp 0}$ по максимуму размаха ВПХ (то же самое максимум $U_{\rm CR}$ по контрольному сигналу) означает получение максимального отношения С/Ш. Это же обстоятельство позволяет осуществлять независимую настройку по $I_{\rm H}$ и $\varphi_{\rm M}$ при разомкнутой обратной связи без скольконибудь заметных дополнительных аппаратурных затрат.

В ПТ-сквидах (см. рис. 4) максимальный размах ВПХ вовсе не означает максимум крутизны ВПХ в окрестности $\varphi_x = 0$ и максимум отношения С/Ш. Поскольку работа с обратной связью — основной режим, то разностный сигнал $\varphi_x - \varphi_{\rm OC}$ близок к нулю и попадает на существенно нелинейный участок ВПХ. Исходя из этого и настройку ПТ-сквидов целесообразно проводить при замкнутой обратной связи, добиваясь максимальной крутизны ВПХ в окрестности $\varphi_x - \varphi_{\rm OC} \sim 0$, что, как показали многократные эксперименты, соответствует максимуму отношения С/Ш. Однако тогда не удается, как в ВЧ-сквидах, реализовать раздельную настройку по I_p и φ_m , так как в схеме с замкнутой

обратной связью, если хотя бы один из указанных параметров находится вне узкой зоны, при любом даже оптимальном значении другого параметра схема не работоспособна.

Учитывая вышеизложенное, нами был предложен и реализован следующий алгоритм ввода в режим ПТ-сквида. Настройка происходит в два этапа. На первом этапе производится грубое определение значений I_{p1} , φ_{m1} в режиме с разомкнутой цепью обратной связи. После нахождения значений I_{p1} и φ_{m1} замыкается цепь ОС и производится уточнение найденных значений (второй этап).

На первом этапе в качестве выходного используется сигнал выхода синхронного детектора U_{CR} с подачей в цепь обратной связи контрольного сигнала большой амплитуды φ_{KC} аналогично тому, как это делалось при настройке ВЧ-сквида по φ_{M} . После полосовой фильтрации и дополнительного усреднения напряжение на выходе СД является функцией двух параметров $\overline{U}_{CR} =$ = $f(I_p, \varphi_M)$. Цель настройки на первом этапе (грубая настройка) — нахождение глобального максимума \overline{U}_{CR} . Это непростая задача из-за сложности формы поверхности \overline{U}_{CR} в координатах I_p , φ_M [3, 4]. При значениях рабочего тока $I_p > 2I_c = I_{pc}$, где I_c — критический ток одного джозефсоновского перехода сквида, сечение \overline{U}_{CR} можно аналитически описать функцией Бесселя первого порядка $J_1(\varphi_M)$. Форма сечений при $\varphi_M =$ const значительно изменяется у различных образцов сквидов и в общем случае не является унимодальной кривой.

Протяженность участка ΔI_{pmax} при $\varphi_{M} = \text{const}$, где сигнал сквида не равен нулю, зависит от критического тока переходов I_c и может быть оценсна как $\Delta I_{pmax} \approx I_c / \beta_L$. Как правило, сквиды изготавливают с $\beta_L \approx 1$ [1, 2]. Тогда для оценки ΔI_{pmax} можно принять $\Delta I_{pmax} \approx I_{p0}/2$, где $I_{p0} \approx 2I_c$.

Известно [1], что глобальным по сечению $I_p = \text{const}$ является первый максимум функции Бесселя первого порядка, который достигается при $\varphi_{\rm M} \approx 1.8$. Координата ближайшего нуля имеет значение $\varphi_{\rm M} \approx 3.9$. Приведенные оценки полезны при выборе шага развертки.

Как показывает экспериментальная проверка, в случае сложных кривых сечений U_{CR} при φ_{M} = const градиентные методы либо не находят глобального максимума и сходятся в одном из локальных [3], либо поиск осуществляется неоправданно долго. Поэтому был принят следующий алгоритм грубой настройки: задается некоторое постоянное значение одной из координат функции $U_{CR} = f(I_p, \varphi_M)$, например $\varphi_M = \varphi_{Mi}$, затем осуществляется развертка по другой координате и формируется массив данных $(\overline{U}_{CR})_i = f(I_p)|_{\varphi_M = \varphi_{Mi}}$. В массиве методом сортировки определяется наибольший элемент max $(\overline{U}_{CR})_i$ и соответствующее ему значение I_{pi} .

Аналогичная процедура проводится для других значений $\varphi_{_{\mathrm{M}}},$ в результате формирустся двумерный массив, в котором определяются следующие величины: sup max U_{CA} — максимальное значение U_{CA} и соответствующие ему значения I_{pmax} и φ_{mmax} . Проведение названной процедуры при корректном выборе шагов по $\varphi_{\rm M}$ и $I_{\rm p}$ позволяет локализовать максимумы функции $U_{\rm CZ}$. Принципиально безразлично, в какой из двух возможных плоскостей: I_p = const либо $\varphi_{\rm M}$ = const — проводить развертку. На практике предпочтительнее использовать сечения при $\varphi_{\rm M}={\rm const.}$ Последнее объясняется тем, что область значений φ_{M} , в которой лежит оптимальное значение φ_{M0} , значительно уже, чем область возможных Ip. Технологический разброс параметров тракта подачи сигнала модуляции обычно определяется разбросом значений коэффициента взаимной индукции катушки модуляции со сквидом и не превышает 50 %. Учитывая, что оптимальное значение $\varphi_{M0} \approx 1,8$, получим, что даже при трехкратном запасе по диапазону перестройки аргумент $J_1(\varphi_{\scriptscriptstyle M})$ находится в области, содержащей всего один нуль функции $J_1(\varphi_{M})$. Таким образом, для грубой локализации максимума по амплитуде модуляции достаточен шаг $\Delta \varphi_{\rm M} \approx \pi/2.$

Шаг развертки по току ΔI_p должен быть меньше, чем значение $\frac{\Lambda I_{pmax}}{2}$, при этом исключается возможность пропуска областей максимумов зависимости $(\overline{U}_{CR})_i = f(I_p) \Big|_{\varphi_M = \varphi_{Mi}}$. Значение ΔI_{pmax} зависит от области допустимых величин рабочего тока $I_{pmin} + I_{pmax}$.

Разброс I_p для различных образцов сквидов велик и составляет 5—100 мкА. Очевидно, что шаг по I_p должен выбираться из условия $\Delta I_p < I_{pmin}/2$. Практически целесообразно выбрать шаг меньше требуемого: $\Delta I_p \approx I_{pmin}/(6 \div 8)$. При этом удается не только локализовать все области, где возможен максимум, но и выделить участок, в котором лежит глобальный экстремум.

Целью точной настройки (второй этап) является достижение максимума коэффициента преобразования K_d всего тракта с замкнутой обратной связью. Для этого после замыкания цепи ОС ПТ-сквида в цепь контрольного сигнала подается синусоидальный сигнал амплитудой $\Phi_{\rm KC} \approx \Phi_0/4$ и частотой, находящейся в области спада АЧХ СП-веберметра. Сигнал контрольной частоты выделяется полосовым фильтром, который дополнительно ослабляет возможны<u>е</u> помехи, детектируется и усредняется. Очевидно, что уровень этого сигнала U_{ϕ} пропорционален K_d .

Далее осуществляется поиск максимума зависимости $\overline{U}_{\phi} = f(I_{p}, \varphi_{M})$.

Границы возможных значений $I_p u \varphi_M$ определяются по результатам грубой настройки. Шаг находится из ранее приведенных соотношений для требуемой точности. Так как поиск максимума ведется только в узкой окрестности глобального максимума U_{CR} , время, затрачиваемое на точную настройку, невелико и составляет 2—3 с.

Как показывают многократная экспериментальная проверка и многолетнее практическое использование, описанные критерии и алгоритмы обеспечивают качество настройки не хуже достигаемого при тщательной ручной настройке.

Аппаратное и программное обеспечение, необходимое для реализации автоматической настройки ВЧ- и ПТ-сквидов, осуществлено на базе ПЭВМ серий DEC и IBM PC. Оно используется в многоканальных сверхпроводниковых измерительных системах, разработанных для применения в областях геофизики, метрологии и медицины.

Автоматизация достаточно сложных процессов настройки сквидов позволила не только уменьшить затраты времени на настройку систем, но и значительно упростить их эксплуатацию. Это открыло возможности использования сверхпроводниковых систем специалистами, далекими от техники: медиками, биологами и др. [5].

СПИСОК ЛИТЕРАТУРЫ

 Слабая сверхпроводимость. Квантовые интерферометры и их применения /Под ред. Б. Б. Шварца, С. Фонера: Пер. с англ.—М.: Мир, 1980.

2. Лихарев К. К., Ульрих Б. Т. Системы с джозефсоновскими контактами. - М.: МГУ, 1980.

3. Уайлд Д. Дж. Методы поиска экстремума /Пер. с англ. — М.: Наука, 1967.

- 4. Тихонов В. И. Статистическая радиотехника. М.: Радио и связь, 1982.
- 5. Голышев Н. В., Моторин С. В., Рогачевский Б. М. и др. Некоторые асцекты построения сверхпроводниковой магнитокардиографической системы // Микропроцессорные системы контроля и управления: Мат-лы Сибирской науч.-техн. конф.--Новосибирск, 1992.

Поступила в редакцию 20 ноября 1992 г.