РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

Nº 2

1992

ТЕХНОЛОГИИ И ЭЛЕМЕНТЫ ФОТОНИКИ

УДК 666.113.32: 535.212

Л. А. Агеев, В. К. Милославский, Т. Штайнборн, В. И. Лымарь

(Харьков)

СПОНТАННЫЕ РЕШЕТКИ, ИНДУЦИРОВАННЫЕ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ В ПЛЕНКАХ Аs₂S₃—Аg

Спонтанные решетки (СР) были обнаружены в тонких пленках As_2S_3 —Ag при облучении поляризованным лазерным светом в области прозрачности As_2S_3 ($\lambda = 633$ нм). Измерением периодов СР в зависимости от толщины пленок и после обработки результатов методами интегральной оптики установлена связь СР с рассеянными в пленках волноводными модами. С помощью электронной микроскопии обнаружена доменная структура СР, связанная с рассеянием мод отдельными дефектами.

Интерес к оптическим свойствам халькогенидных стеклообразных пленок связан с их применением в интегральной оптике [1], фотографии и голографии. Использование указанных пленок для регистрации световых пучков основано на их способности к фотопревращениям под действием излучения. Известен ряд эффектов, возникающих при облучении пленок (фотопотемнение, фотодиффузия и др. [2]), число которых расширяется при облучении поляризованным лазерным пучком, приводящим к различным явлениям фотоанизотропии [3]. Записи голограмм и голографических решеток с высокой дифракционной эффективностью способствует фотолегирование пленок различными металлами, и в частности серебром [4, 5].

Известно, что рост дифракционной эффективности в ряде случаев ограничивается возникновением шумовых голограмм. В тонких светочувствительных пленках к шумовым голограммам относятся спонтанные периодические структуры, появление которых связано с рассеянием в пленках волноводных мод [6].

В настоящей работе сообщается об обнаружении и исследовании спонтанных решеток (СР), индуцируемых в тонких аморфных пленках As₂S₃, фотолегированных Ag при действии поляризованного лазерного пучка.

Описание эксперимента. Тонкие пленки As_2S_3 были получены путем вакуумного испарения порошка на ненагретые стеклянные подложки. Толщина пленок As_2S_3 варьировалась от 20 до 380 нм. Пленка покрывалась сверху тонким слоем Ag, постоянная толщина которого (около 10 нм) контролировалась кварцевым измерителем толщин. Суммарная толщина образцов измерялась с точностью ± 2 нм методом Толанского. Приготовленные образцы облучались нормально падающим на образец линейно поляризованным пучком лазеров (He—Cd, аргоновый, He—Ne-лазеры, $\lambda = 442$, 488, 515 и 633 нм).

О появлении СР можно судить по характерным картинам малоуглового рассеяния на экране, поставленном между лазером и облучаемым образцом. Как показано в [6], рост СР из-за разброса их волновых векторов сопровождается появлением узкой, вытянутой параллельно вектору поляризации E_0 индуцирующего пучка полосы рассеянного излучения. Малоугловое рассеяние позволяет контролировать появление и рост СР в процессе облучения без

изменения установки образца. Облучение пленок As₂S₃—Ag лазерным светом всех длин волн приводит за короткий промежуток времени к появлению на облученном участке относительно прозрачного пятна, свидетельствующего о фоторастворении пленки Ag в As₂S₃ за счет фотодиффузионных и фотохимических процессов. Обнаружено, что при действии коротковолнового излучения с $h\nu > E_g$, где $E_g = 2,3$ эВ — ширина запрещенной зоны As₂S₃, фоторастворение Ag не сопровождается появлением малоуглового рассеяния и СР; в то же время малоугловое рассеяние и СР появляются при действии излучения от Не-Ne-лазера (До = 633 нм) в области относительной прозрачности As₂S₃.

Фотоиндуцированные CP из-за их малого периода, меньшего λ_0 (зачастую $d < \lambda_0/2$), не могут быть обнаружены обычным образом по дифракции с помощью пробного пучка с длиной волны λ_0 . В связи с этим для определения d образец облучался пробным пучком с $\lambda < \lambda_0$ от He—Cd-лазера и углы дифракции измерялись по автоколлимационной схеме. Дифракционный рефлекс от СР имеет вид серповидной дуги с касательной к центру II Е., что свидетельствует об образовании нерегулярной СР со штрихами, преимущественно вытянутыми вдоль Е. Период решетки находился по углу дифракции в центре дуги. В заданном интервале толщин h As₂S₃ была исследована зависимость d(h). Структура СР после обработки облученных образцов в фиксирующем растворе щелочи исследовалась с помощью электронного микроскопа ПЭМ-100.

Результаты эксперимента и их обсуждение. Расположение рефлексов от СР относительно Ео свидетельствует о связи СР с рассеянными в пленке волноводными ТЕ-модами. Волноводные моды возбуждаются в визуально нерассеивающих пленках As₂S₃ за счет слабого рэлеевского рассеяния случайными дефектами, малыми по сравнению с λ размерами. Если предположить, что преобладающими являются изотропные центры рассеяния (гранулы Ag, дефекты точечного типа и др.), то рассеянное излучение имеет вид поляризованной сферической волны с амплитудой, зависящей от полярных углов θ и γ , где $\theta = < (k_s, z), \gamma = < (k_s, x), k_s$ — волновой вектор рассеянной волны; k_s — тангенциальная составляющая k,, равная волновому вектору волноводной моды β ; ось x II E₀, ось z нормальна к поверхности образца. Вектор поляризации рассеянной волны Е, удобно разделить на ТЕ- и ТМ-компоненты в плоскости, перпендикулярной k_s, где E_{STE} параллелен поверхности пленки; E_{STM} лежит в плоскости, проходящей через векторы k, и k,; ТЕ- и ТМ-компоненты возбуждают в пленке ТЕ- и ТМ-моды соответственно. Амплитуды компонент при нормальном падении света на образец равны

$$A_{STE} = \frac{r_0}{r} A_0 \exp(-\alpha r) \sin\gamma, \qquad (1a)$$

$$A_{STM} = \frac{r_0}{r} A_0 \exp(-\alpha r) \cos\gamma \cdot \cos\theta, \qquad (1b)$$

где α — амплитудный коэффициент поглощения пленки; r_0 — характерная длина, зависящая от структуры и размеров центра рассеяния [7]; A₀ амплитуда падающей волны.

На рассеянных модах при их сложении с падающей волной формируется интерференционное поле с периодом вдоль пленки $d = 2\pi\beta^{-1}$ и с видностью, зависящей от амплитуд A_{STE} и A_{STM} и азимутов у и θ ; в частности, при рассеянии TE-мод видность пропорциональна $\sin^2 \gamma$ [8]. На начальном интерференционном поле в результате фотодиффузионных процессов и фотохимических превращений возникают СР, дальнейший рост которых определяется положительной обратной связью. Из (1a) и (1b) следует, что интерференционная картина с заметной видностью формируется при $d << a^{-1}$, что объясняет отсутствие СР при облучении пленок в районе фундаментальной полосы As₂S₃, где $\alpha > 10^4$ см⁻¹, и возникновение СР при облучении Не-Ne-лазером. Так как $|A_{STE}|$ максимален при $\gamma = \pm \pi/2$, а $|A_{STM}|$ — при $\gamma = 0, \pi, TE$ -

38

Рис. I. Зависимость периода СР от суммарной толщины пленки $As_2S_3(Ag)$: точки – жеперимент, I – расчетная зависимость d(h) для TE_0 -решеток при n = 2,80 (20 $\le h \le 60$ нм); 2 – расчетная зависимость d(h) для TE_0 - и TE_1 -решеток при n = 2,52 (160 $\le h \le 360$ нм)

решетки растут на модах, преимущественно рассеянных $\perp E_0$, *TM*решетки — на модах, рассеянных II E₀. Отношение $\eta =$ = $A_{STM}(0)/A_{STE}(\pi/2) = \cos\theta$, и так как в лучевом приближении $\beta = (2\pi/\lambda_0)n\sin\theta$ и для пленок конечной толщины $\beta < (2\pi/\lambda_0)n$,

величина $\eta < 1$, что определяет в согласии с экспериментом преимущественный рост *TE*-решеток.

Зависимость d(h) (рис. 1) характерна для СР, формируемых на волноводных модах [6]. При малых h (около 20 нм) d близок к (λ_0/n_1) = 418 нм, где $n_1 = 1,515$ — показатель преломления стеклянной подложки. С ростом hпериод уменьшается до (λ_0/n^*), где $n^* < n = 2,61$ — показатели преломления As₂S₃ при $\lambda_0 = 633$ нм. При $h \ge h_1 = 180$ нм возникают новые СР, период которых также уменьшается с ростом h, новые СР появляются при $h \ge h_2 = 343$ нм, начиная с $d = (\lambda_0/n_1)$. Таким образом, при $h < h_1$ СР растут на рассеянных TE_0 -модах, при $h_2 \ge h \ge h_1$ — на рассеянных TE_0 - и TE_1 -модах и т. д. В двухи трехмодовых пленках, кроме $TE_0 - TE_m$ -решеток (m = 1, 2), наблюдаются также «сверхрешетки» с большим d и с волновым вектором $K = K_{TE_0} - K_{TE_m}$, дифракционные рефлексы от которых проявляются уже в процессе облучения пленок. Причиной возникновения «сверхрешеток» является интерференционное взаимодействие TE_0 - и TE_m -мод, рассеянных в одном направлении [6].

Расчет зависимости d(h) проведен путем совместного решения уравнения фазового синхронизма $d = 2\pi\beta^{-1}$ и дисперсионного уравнения для TE_m -мод [9] в предположении оптической однородности пленки. Фотолегирование As₂S₃ серебром приводит к образованию двухслойной системы, состоящей из слоя As₂S₃(Ag), обогащенного Ag определенной концентрации, и слоя As₂S₃ [10, 11]. Соотношение толщин As2S3 и Ag, при котором достигается полное фоторастворение Ag в As₂S₃, приближенно равно 2 [11]. При толщине пленки Ag 10 нм средняя толщина обогащенного слоя As₂S₃(Ag) около 30 нм, т. е. слой $As_2S_3(Ag)$ можно считать однородным при h < 30 нм, в то время как при h >> 30 нм имеет место однородный слой As₂S₃ с тонкой пленкой As₂S₃(Ag) на его поверхности. Так как показатель преломления неотожженной пленки As_2S_3 заметно меньше [12] *п* массивного стекла (2,61), а фотолегирование Ag приводит к заметному росту n [11, 13], флуктуацией n-слоя As₂S₃ и h- и *п*-слосв $As_2S_3(Ag)$ можно объяснить большой разброс точек в зависимости d(h)на участке h (80-180 нм), где проявляется двухслойный характер облученной пленки.

В связи с изложенным расчет d(h) проведен на участке малых (20—60 нм) и больших (180—380 нм) h путем подбора n на заданном участке посредством минимизации квадрата разностей экспериментальных и расчетных значений d. Расчет на первом участке дает n = 2,80, а на втором — n = 2,52. Сходные значения n получаются из толщин отсечек для TE_1 - и TE_2 -мод. Для однородного слоя

$$h_m = \frac{\lambda_0}{2\pi (n^2 - n_1^2)^{1/2}} \operatorname{arctg} \left(\frac{n_1^2 - n_0^2}{n^2 - n_1^2} \right)^{1/2} + \frac{m\lambda_0}{2(n^2 - n_1^2)^{1/2}}.$$

(2)

39

Если $n_0 = 1$, $n_1 = 1,515$, $\lambda_0 = 633$ нм, имеем n = 2,54 при $h_1 = 180$ нм и n = 2,51при $h_2 = 343$ нм. Из приведенных оценок следует увеличение показателя преломления слоя As₂S₃(Ag) на 0,3 по сравнению с пленкой As₂S₃ (n = 2,50); рост n на несколько десятых при фотолегировании As₂S₃ серебром отмечался в [11, 13].

Электрономикроскопические снимки СР облученных пленок (рис. 2, *a*, *b*) сходны с микрофотографиями СР в пленках AgCl—Ag [6]. В одномодовых пленках (см. рис. 2, *a*) СР нерегулярны и состоят из отдельных микрорешетокдоменов, вытянутых \perp E₀, в то время как штрихи внутри домена преимущественно || E₀. Ширина домена составляет десятые доли микрометра, длина доменов в среднем равна 20 периодам СР (4—6 мкм). Отчетливо видны штрихи основной решетки с периодом $d = 2\pi\beta^{-1}$. Наблюдаются также домены с d' = d/2. Возможной причиной появления последних является интерференция двух *TE*₀-мод, рассеянных навстречу друг другу, при этом возникает интерференционное поле с волновым вектором K = 2 β . Из-за малости d' такие решетки не обнаруживаются по дифракции.

Причиной появления доменов является рассеяние TE-мод отдельными центрами рэлеевского типа. На это указывает искривление штрихов, вогнутая сторона которых обращена к наиболее узкой части домена. Равновесная форма доменов определяется азимутальным распределением амплитуды рассеянных TE-мод и видностью начальной интерференционной картины, пропорциональной sin² γ , конкуренцией TE-мод, рассеянных различными центрами, и положительной обратной связью, определяющей большую скорость развития CP с большей амплитудой.

Более сложный вид имеют снимки для двухмодовых пленок, на которых видны домены с большим (TE_1 -микрорешетки) и с малым (TE_0 -микрорешетки) периодами и микрорешетки с d' = d/2. Кроме обычных СР на TE-модах, на отдельных редких участках наблюдаются микрорешетки со штрихами $\bot E_0$ (см. рис. 2, b). Происхождение таких решеток связано с рассеянием TM_0 -мод. Наложение TM_0 - и TE_1 -решеток приводит к двумерной решетке, имеющей точечный характер, с периодами $d_{TE_1} > d_{TM_0}$. На рис. 2, b также отчетливо проявляется положение рассеивающего центра, приводящего к одновременному возбуждению TE_1 - и TM_0 -мод. Дифракционные рефлексы от TM_0 -решеток гораздо слабее рефлексов от TE-решеток и часто не видны, что затрудняет построение зависимости d(h).

В силу недостаточного в настоящее время понимания механизма фоторастворения серебра в As_2S_3 трудно предложить конкретный механизм переноса массы при росте СР. Рост *n* при растворении Ag указывает на образование фазовой решетки с модуляцией *n* вдоль пленки. По-видимому, из-за боковой диффузии Ag [14] имеет место перенос Ag из максимумов в минимумы интерференционной картины, что приводит при полном растворении Ag к повышен-

Рис. 2. Микрофотография СР:

a -одномодовая пленка As₂S₃ - Ag, h = 105 нм, $d_{TE0} = 309$ нм; b -двухмодовая пленка, h = 247 км, $d_{TE1} = 340$ нм, $d_{TM0} = 266$ нм

40

ной толщине слоя As₂S₃(Ag) в интерференционных минимумах. Модуляция толщины этого слоя возможно вызывает модуляцию суммарной толщины пленки с образованием периодического поверхностного рельефа. Для дальнейшего изучения структуры CP и механизма переноса массы при их росте следует провести исследования спектральных характеристик облученных пленок и кинетики развития CP.

Эксперименты по наблюдению СР указывают на необходимость их учета как шумовых решеток при формировании голографических решеток монохроматическим излучением в области прозрачности As_2S_3 , а также при изучении различных фотоанизотропных эффектов [3], возникающих при облучении халькогенидных пленок поляризованным светом с $h\nu < E_g$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андриеш А. М., Пономарь В. В., Смирнов В. Л. и др. Использование халькогенидных стекол в интегральной и волоконной оптике (обзор) // Квантовая электрон.—1986.—13, № 6.
- 2. Любин В. М. Фотоструктурные превращения в халькогенидных стеклообразных полупроводниках // Автометрия.—1988.—№ 4.
- 3. Любин В. М., Тихомиров В. К. Фотоиндуцированный дихроизм в пленках халькогенидных стеклообразных полупроводников // ФТТ.—1990.—32, № 6.
- 4. Костышин М. Т., Романенко П. Ф., Стронский А. В. и др. О влиянии толщины слоя металла на процесс записи голографических решеток в светочувствительных системах As₂Se₃—As₂S₃—Ag // Укр. физ. журн.—1986.—31, № 1.
- 5. Zakery A., Slingert C. W., Ewen P. I. S. et al. Chalcogenide gratings produced by the metal dissolution effect // J. Phys. D.-1988.-21, N 10.-P. 78.
- 6. Агеев Л. А., Блоха В. Б., Милославский В. К. Свойства периодических структур, фотоиндуцированных в тонкопленочной системе AgCi—Ag // Укр. физ. журн.—1985.—30, № 4.
- 7. Ван де Хюлст Г. Рассеяние света малыми частицами. --- М.: Изд-во иностр. лит., 1961.
- Агеев Л. А., Ассаад Н., Милославский В. К. и др. Самозарождающиеся фотоиндуцированные периодические структуры в пленках светочувствительных материалов при наклонном падении лазерного излучения // Оптика и спектроскопия.—1990.—68, вып. 3.
- 9. Хансперджер Р. Интегральная оптика. М.: Мир, 1985.
- Kahnt H., Schirrmeister F., Feltz A. Model of photostimulated diffusion of Ag in amorphous chalcogenides // Phys. Stat. Sol. (a). ---1988.---108, N1.--P. 149.
- 11. Костышин М. Т., Касярум О. П., Кудрявцев А. А. Моделирование процесса фотолегирования в системе полупроводник — металл на основе представления о се трехслойной структуре // Укр. физ. журн.—1987.—32, № 7.
- Kumar W., White K. Thermal aging effects in vitreous As₂S₃ films // Thin Solid Films.—1986.— 135, N 1.—P. L13.
- 13. Zakery A., Zekak A., Ewen P. I. S. et al. Optical constants of Ag photodoped As—S amorphous films // J. Non-Cryst. Sol.—1989.—114, N 1.—P. 109.
- Suptitz P., Fischer A. Lateral diffusion of photodoped silver in amorphous Ge0,25Se0,75 layers // Phys. Stat. Sol. (a).-1984.-82, N 1.-P. 157.

Поступила в редакцию 29 апреля 1991 г.

41

УДК 621.378: 681.33

Л. А. Борыняк, Е. А. Краснопевцев, А. В. Логинов, А. А. Штыгашев

(Новосибирск)

ПАНОРАМНЫЕ ИНТЕРФЕРОМЕТРЫ ДЛЯ ИССЛЕДОВАНИЯ ДЕФОРМАЦИЙ ОБЪЕКТОВ ОСЕСИММЕТРИЧНОЙ ФОРМЫ

Разработаны панорамные интерферометры для контроля формоизменения поверхности тел вращения. При необходимости можно регистрировать и выделять отдельно нормальные и внутриплоскостные компоненты вектора перемещения деформируемой поверхности. Приведены метрология и примеры контроля деформаций цилиндрических оболочек.

4 Автометрия № 2, 1992 г.